Download presentation
Presentation is loading. Please wait.
Published byMatilda McDonald Modified over 9 years ago
1
Chapter 4 Rocks & Igneous Rocks
2
Rock Definition A naturally occurring, solid Composed of one or more minerals
3
Exceptions to the Definition Some rocks are not formed of minerals Noncrystalline, glassy volcanic rocks such as obsidian and pumice Coal which is formed from compacted plant remains
4
Appearance of a Rock The appearance of a rock is determined by two major factors Mineralogy Texture
5
Appearance of a Rock Mineralogy refers to the relative proportions of the constituent minerals Texture is determined by the size, shape and arrangement of the mineral crystals
6
Appearance of a Rock Mineralogy and texture are related to how and where a rock was formed and what has happened to the rock since it was created
7
Three Families of Rocks Igneous- from magma/lava Sedimentary-compaction/cementing of sediments Metamorphic- changed by heat and pressure
8
Three Types of Rocks
9
Igneous Rocks Rocks formed by the solidification of magma (molten rock) Granite
10
Two Types of Igneous Rocks Extrusive igneous rocks form when magma erupts at the surface (i.e., above ground) and rapidly cools Intrusive igneous rocks form when magma intrudes into bedrock and slowly cools (i.e., below ground)
11
Igneous Rocks
12
Most Igneous Rock are Silicates Quartz Feldspar Mica Pyroxene Amphibole Olivine Basalt
13
Granite
14
Sedimentary Rocks Rocks formed by consolidation of sediments Classified by the type of sediments
15
Three Major Types of Sediments Clastic Sediments are physically deposited particles derived from weathered rocks Chemical Sediments include minerals carried in solution such as calcite and halite Organic Sediments are composed of living materials (plant/animal material and fossils/shells)
16
From Sediments to Solid Rocks Lithification is the process of converting sediments into solid rocks (will cover in detail in another lecture)
17
The Two Types of Lithification Compaction – sediments are squeezed together by the weight of overlying sediments into a solid mass Cementation – minerals precipitate around the sediments and bind them into a solid rock
18
Sedimentary Rocks
19
5 % by volume of the upper crust 75 % by exposed surface area of continents
20
Sedimentary Rocks Sedimentary rocks commonly contain fossils In fact, some sedimentary rocks are almost entirely composed of fossils Can exhibit extensive horizontal layers called bedding
21
Composition Sedimentary rocks can be composed of sediments created from any of three great families of rock (igneous, sedimentary, metamorphic) Chemical cementation commonly includes calcite, gypsum and halite
22
Metamorphic Rocks Metamorphic rocks are formed by the transformation of previously-existing rocks in the solid state due to increased temperature and pressure
23
Metamorphic Rocks Metamorphism can change the mineralogy, texture and/or the chemical composition of a “parent rock” while maintaining its solid form Note that the rock does not melt (temperature range 250 to 700 C)
24
Regional and Contact Metamorphism Regional metamorphism occurs where high temperature and pressures occur over large region (plate tectonics) Contact metamorphism is limited to smaller areas such as around a magma intrusion into bedrock
25
Regional Metamorphism
26
Contact Metamorphism
27
Other Forms of Metamorphism Ultra-high pressure metamorphism occurs deep in the continental and oceanic crust High-pressure, low-temperature metamorphism occurs where oceanic crust subducts under a continental plate Shock metamorphism at impact sites
28
Metamorphic Mineralization Silicates are the most common mineral in metamorphic rocks Minerals can tell you the “grade”of metamorphism Certain minerals are uniquely characteristic of metamorphic rocks (kyanite, staurolite, some garnets)
29
Contact Ultra-high pressure Regional High-press, low-temp Metamorphic Mineralization
30
Proportions of the Rock Types
31
A Few More Facts… Igneous processes create new rock Metamorphic and sedimentary processes re-work old rock into a new form Silicate mineral are the most common minerals found in all types of rocks
32
Common Minerals Found in Rocks
33
Five Very Different Locations
39
Rock Cycle
41
Subduction of an oceanic plate beneath a continental plate uplifts a volcanic mountain range Magma rises from melting plate and intrudes or extrudes in the crust Rock Cycle
42
Magmas cool to make igneous rock Basalt versus granite Rock Cycle
43
Weathering and erosion creates sediments Rock Cycle
44
Sediments are carried to the oceans and lakes Lithification Rock Cycle
45
Tectonic plates interact Metamorphism of subducted rock Rock Cycle
46
Entire process starts over as plates interact Rock Cycle
47
Igneous Rocks
48
How do igneous rocks differ from one another? Where do they form? How do rocks solidify from a melt (magma)? Where do rock melt?
49
We Classify Igneous Rocks by Appearance Mineralogy (Chemistry) Texture
50
Igneous Rocks
51
We Classify Igneous Rocks by Genetics (Origin) There are two classes of igneous rocks Intrusive Extrusive
52
Genetic Classification of Igneous Rocks Intrusive igneous rocks crystallized from slowly cooling magma intruded within the Earth’s crust, such as granite and gabbro
53
Granite Intrusions
54
Genetic Classification of Igneous Rocks Extrusive igneous rocks crystallized from rapidly cooling magma extruded on the surface of the Earth as lava or erupted as pyroclastic material, such as basalt
55
Extrusive Igneous Rocks Rocks formed from the cooling of lavas extruded onto the Earth’s surface or onto ocean floors Rocks formed by the cooling of pyroclastic material, such as fragmented pieces of magma and material erupted into the air
56
We Can Also Classify Igneous Rocks by Composition Chemistry Mineralogy
57
Chemistry Modern classification of igneous rock is based upon the silica (SiO 2 ) content The silica content is determined by the silicate minerals that occur in the rock (i.e., the minerals contain SiO 2 ) The percentage of silica ranges from about 40% to about 70% Rocks are referred to as “silica rich” or “silica poor”
58
Mineralogy There are four major divisions of igneous rocks based upon the content of elements in the minerals: Felsic Intermediate Mafic Ultramafic
59
Rich (high) in minerals containing silica Poor (low) in iron and magnesium They include: Granite Rhyolite Felsic Igneous Rocks
60
Intermediate Igneous Rocks Intermediate in composition between felsic and mafic igneous rocks Less silica, more Fe & Mg than felsic More silica, less Fe & Mg than mafic They include: Granodiorite Dacite Diorite Andesite
61
Mafic Igneous Rocks Poor (low) in minerals containing silica Rich (high) in iron and magnesium They include: Gabbro Basalt
62
Ultramafic Igneous Rocks Very uncommon on the Earth’s surface Very poor (lower) in minerals containing silica Consist primarily of mafic minerals (olivine, pyroxene) The most common ultramafic rock is: Peridotite
64
Felsic IntermediateMafic GraniteGranodioriteDioriteGabbro Basalt AndesiteDaciteRhyolite
66
Common Minerals of Igneous Rocks
67
When Do Rocks Melt? Melting starts at ~700 o C When the temperature exceeds the melting point of the rock or some minerals within the rock Minerals melt at different temperatures
68
Three Factors Affecting Melting of Rocks Pressure: Increased pressures raises melting points Water Content: Increased water content lowers melting points Composition: Felsic minerals melt at lower temperatures than mafic minerals When Do Rocks Melt?
69
Magma Differentiation The process by which rocks of various compositions can arise from a uniform parent magma
70
The Formation of Magma Chambers Partial melting
71
Less dense magma The Formation of Magma Chambers
72
Partial melting Less dense magma Magma rises The Formation of Magma Chambers
73
Partial melting Less dense magma Magma rises Magma pools in magma chamber The Formation of Magma Chambers
74
Magma Differentiation Occurs because different minerals crystallize (solidify) at different temperatures In other words, as the magma cools some minerals form first, some form last
75
The process by which crystals forming in a cooling magma are segregated from the remaining liquid In a simple scenario, the crystal settle to the floor or adhere to the walls of the magma chamber Fractional Crystallization
76
The elements (such as Fe and Mg) used to create the newly formed crystals are now no longer available for creating new minerals Therefore the chemical composition of the magma slowly changes as new minerals are continually formed and the available matter is selectively used up
77
Bowen’s Reaction Series Experiments that determined the sequence of crystallization of minerals from a gradually cooling mafic (basaltic) magma Conducted by Norman L. Bowen prior to 1916 These experiments totally rewrote our understanding of igneous rock formation
78
Bowen’s Reaction Series
79
Evidence of Fractional Crystallization in the Palisades Sill
80
first olivine next pyroxene pyroxene finally plagioclase & plag. Feldpar finishes
81
Partial melting of upper mantle: e.g. at divergent spreading centers Partial melting of continental crustal rocks Mafic Magmas Felsic Magmas Partial Melting and the Origin of Magmas
82
Magmatic Stoping: Making Room for the Intrusion of Magma Wedging open overlying rock Breaking off large blocks of rock (remnants of which are called xenoliths) Melting of surrounding country rock
83
Rising Magma Wedges Open and Fractures Overlying Country Rock
84
Overlying rocks may bow up
85
Magma melts surrounding rock
86
…changing the composition of the magma
87
Blocks of the Overlying Country Rocks (Xenoliths) May Break Off and Sink into the Magma
88
Plutons Large igneous bodies formed at depth in the Earth’s crust
89
Types of Plutons Batholith: Massive, discordant intrusive body covering at least 100 km 2 Stock: Massive, discordant intrusive body covering less than 100 km 2 Dike: Tabular, discordant intrusive body Sill: Tabular, concordant intrusive body
90
Types of intrusive and extrusive igneous structures
91
Sill
92
Dike
93
Where Do Most Magmas Occur? Divergent Plate Margins Convergent Plate Margins Mantle Plumes/Hot Spots
94
Island Arc Plate Subduction (Japanese Islands)
95
Continental Plate Subduction (Mount St. Helens)
96
Hot Spot Volcanism (Hawaii)
97
Generation of Magmas at Convergent Plate Margins Subduction drags oceanic lithosphere (including a veneer of “wet” sediments) beneath the adjacent plate
98
Generation of Magmas at Convergent Plate Margins The release of volatiles lowers the melting point of the adjacent mantle, causing fluid-induced melting to form a mafic magma, which becomes more intermediate in composition as it rises through the overlying crust
100
x
101
Ophiolite Suites Unusual assemblages of rocks found on land that had characteristics of seafloor Composed of deep-sea sediments, basaltic lavas and mafic igneous intrusions Fragments of ocean crust moved onto land by plate tectonics
102
? Idealized Section of an Ophiolite Suite
103
Generation of Igneous Rocks at Divergent Plate Margins Some of the mafic magma cools in massive magma chambers to form massive gabbros Some of the magma is intruded as sheeted dikes These dikes are feeder for basaltic lava flows which form pillows as they extrude beneath the ocean
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.