Download presentation
Presentation is loading. Please wait.
Published byNathaniel Lawrence Modified over 11 years ago
1
A Two-Step Approach to Hallucinating Faces: Global Parametric Model and Local Nonparametric Model Ce Liu Heung-Yeung Shum Chang Shui Zhang CVPR 2001
2
Face hallucination Face Hallucination to infer high resolution face image from low resolution input (a) Input 24×32 (b) Hallucinated result (c) Original 96×128
3
Why to study face hallucination? Applications Video conference To use very low band to transmit face image sequence To repair damaged images in transmission Face image recovery To recover low-quality faces in old photos To recover low-resolution monitoring videos Research Information recovery How to formulate and learn prior knowledge of face How to apply face prior to infer the lost high frequency details Super resolution How to model the bridge from low-resolution to high-resolution
4
Difficulties and solution strategy Difficulties Sanity Constraint The result must be close to the input image when smoothed and down-sampled Global Constraint The result must have common characteristics of a human face, e.g., eyes, mouth, nose and symmetry Local Constraint The result must have specific characteristics of this face image, with photorealistic local features Solution strategy We choose learning based method aided by a large set of various face images to hallucinate face
5
Previous learning-based super-resolution methods Multi-resolution texture synthesis De Bonet. SIGGRAPH 1997 Markov network Freeman and Pasztor. ICCV 1999 Face hallucination Baker and Kanade. AFGR 2000, CVPR 2000 Image analogies Hertzmann, Jacobs, Oliver, Curless and Salesin. SIGGRAPH 2001 They all use local feature transfer or inference in Markov random field, without any global correspondence taken into account.
6
Decouple high-resolution face image to two parts high resolution face image global face local face Two-step Bayesian inference 1. Inferring global face 2. Inferring local face Finally adding them together Our method 1. Inferring global face 2. Inferring local face Finally adding them together ?
7
Flowchart of hallucinating face Learning Process Inference Process Training dataset Global faces Local faces Learning (a) Learn the prior of global face by PCA (b) Build Markov network between global and local faces Inference (c) Infer global face by linear regression (d) Infer local face by Markov network (c) (d) (a) (b) InputOutput
8
Inferring global face Prior Assume the prior of global face to be Gaussian and learn it by PCA. The global face is the principal components of the high-resolution face image. (Many other methods such as Gaussian mixture, ICA, kernel PCA, TCA can be used to model the face prior. We choose PCA because it could get simple solution) Likelihood Treat low resolution input as a soft constraint to the global face. The likelihood turns out to be a Gaussian distribution again. Posteriori The energy of the posteriori has a quadratic form. The MAP solution is converted to linear regression by SVD.
9
How to compute global face
10
Local face is pursued by minimizing the energy of Markov network Two terms of energies: external potential to model the connective statistics between two linked patches in and. internal potential to make adjacent patches in well connected. Energy minimization by simulated annealing Inferring local face by Markov network An inhomogeneous patch-based nonparametric Markov network
11
Experimental results (1) (a)(b)(c)(d) (a)Input low 24×32 (b)Inferred global face (c)Hallucinated result (d)Original high 96×128
12
Experimental results (2)
13
Experimental results (3)
14
Comparison with other methods (a)(b)(c)(d)(e)(f) (a)Input (b)Hallucinated by our method (c)Cubic B-spline (d)Hertzmann et al. (e)Baker et al. (f)Original
15
Summary Hybrid modeling of face (global plus local) Global: the major information of face, lying in middle and low frequency band Local: the residue between real data and global model, lying in high frequency band The sanity constraint is added to the global part The global face is modeled by PCA and inferred by linear regression The conditional distribution of the local face given the global face is modeled upon a patch-based nonparametric Markov network, and inferred by energy minimization Both of the two steps in inference are global optimal Global part: optimizing a quadratic energy function by SVD Local part: optimizing the network energy by simulated annealing
16
Thank you!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.