Download presentation
Presentation is loading. Please wait.
Published byMakayla Sinclair Modified over 11 years ago
1
Self-Paced Learning for Semantic Segmentation
M. Pawan Kumar
3
Self-Paced Learning for Latent Structural SVM
M. Pawan Kumar Benjamin Packer Daphne Koller
4
Aim Input x Output y Y Hidden Variable h H
To learn accurate parameters for latent structural SVM Input x Output y Y Hidden Variable h H “Deer” Y = {“Bison”, “Deer”, ”Elephant”, “Giraffe”, “Llama”, “Rhino” }
5
Aim (y*,h*) = maxyY,hH wT(x,y,h) Feature (x,y,h) (HOG, BoW)
To learn accurate parameters for latent structural SVM Feature (x,y,h) (HOG, BoW) Parameters w (y*,h*) = maxyY,hH wT(x,y,h)
6
Motivation FAILURE … BAD LOCAL MINIMUM Real Numbers Imaginary Numbers
Math is for losers !! Real Numbers Imaginary Numbers eiπ+1 = 0 FAILURE … BAD LOCAL MINIMUM
7
Motivation SUCCESS … GOOD LOCAL MINIMUM Real Numbers Imaginary Numbers
Euler was a Genius!! Real Numbers Imaginary Numbers eiπ+1 = 0 SUCCESS … GOOD LOCAL MINIMUM
8
Motivation Simultaneously estimate easiness and parameters
Start with “easy” examples, then consider “hard” ones Simultaneously estimate easiness and parameters Easiness is property of data sets, not single instances Easy vs. Hard Expensive Easy for human Easy for machine
9
Outline Latent Structural SVM Concave-Convex Procedure
Self-Paced Learning Experiments
10
Latent Structural SVM Training samples xi Ground-truth label yi
Felzenszwalb et al, 2008, Yu and Joachims, 2009 Training samples xi Ground-truth label yi Loss Function (yi, yi(w), hi(w))
11
(yi(w),hi(w)) = maxyY,hH wT(x,y,h)
Latent Structural SVM (yi(w),hi(w)) = maxyY,hH wT(x,y,h) min ||w||2 + C∑i(yi, yi(w), hi(w)) Non-convex Objective Minimize an upper bound
12
Latent Structural SVM (yi(w),hi(w)) = maxyY,hH wT(x,y,h)
min ||w||2 + C∑i i maxhiwT(xi,yi,hi) - wT(xi,y,h) ≥ (yi, y, h) - i Still non-convex Difference of convex CCCP Algorithm - converges to a local minimum
13
Outline Latent Structural SVM Concave-Convex Procedure
Self-Paced Learning Experiments
14
Concave-Convex Procedure
Start with an initial estimate w0 Update hi = maxhH wtT(xi,yi,h) Update wt+1 by solving a convex problem min ||w||2 + C∑i i wT(xi,yi,hi) - wT(xi,y,h) ≥ (yi, y, h) - i 14
15
Concave-Convex Procedure
Looks at all samples simultaneously “Hard” samples will cause confusion Start with “easy” samples, then consider “hard” ones 15
16
Outline Latent Structural SVM Concave-Convex Procedure
Self-Paced Learning Experiments
17
Self-Paced Learning REMINDER
Simultaneously estimate easiness and parameters Easiness is property of data sets, not single instances 17
18
wT(xi,yi,hi) - wT(xi,y,h)
Self-Paced Learning Start with an initial estimate w0 Update hi = maxhH wtT(xi,yi,h) Update wt+1 by solving a convex problem min ||w||2 + C∑i i wT(xi,yi,hi) - wT(xi,y,h) ≥ (yi, y, h) - i 18
19
wT(xi,yi,hi) - wT(xi,y,h)
Self-Paced Learning min ||w||2 + C∑i i wT(xi,yi,hi) - wT(xi,y,h) ≥ (yi, y, h) - i 19
20
wT(xi,yi,hi) - wT(xi,y,h)
Self-Paced Learning vi {0,1} min ||w||2 + C∑i vii wT(xi,yi,hi) - wT(xi,y,h) ≥ (yi, y, h) - i Trivial Solution 20
21
Self-Paced Learning min ||w||2 + C∑i vii - ∑ivi/K
wT(xi,yi,hi) - wT(xi,y,h) ≥ (yi, y, h) - i Large K Medium K Small K 21
22
Self-Paced Learning min ||w||2 + C∑i vii - ∑ivi/K
Alternating Convex Search Biconvex Problem vi [0,1] min ||w||2 + C∑i vii - ∑ivi/K wT(xi,yi,hi) - wT(xi,y,h) ≥ (yi, y, h) - i Large K Medium K Small K 22
23
Self-Paced Learning hi = maxhH wtT(xi,yi,h)
Start with an initial estimate w0 hi = maxhH wtT(xi,yi,h) Update Update wt+1 by solving a convex problem min ||w||2 + C∑i vii - ∑i vi/K wT(xi,yi,hi) - wT(xi,y,h) ≥ (yi, y, h) - i Decrease K K/ 23
24
Outline Latent Structural SVM Concave-Convex Procedure
Self-Paced Learning Experiments
25
Object Detection Input x - Image Output y Y Latent h - Box
- 0/1 Loss Y = {“Bison”, “Deer”, ”Elephant”, “Giraffe”, “Llama”, “Rhino” } Feature (x,y,h) - HOG
26
Object Detection Mammals Dataset 271 images, 6 classes
90/10 train/test split 4 folds
27
Object Detection CCCP Self-Paced
28
Object Detection CCCP Self-Paced
29
Object Detection CCCP Self-Paced
30
Object Detection CCCP Self-Paced
31
Object Detection Objective value Test error
32
Handwritten Digit Recognition
Input x - Image Output y Y Latent h - Rotation - 0/1 Loss MNIST Dataset Y = {0, 1, … , 9} Feature (x,y,h) - PCA + Projection
33
Handwritten Digit Recognition
SPL C C C - Significant Difference
34
Handwritten Digit Recognition
SPL C C C - Significant Difference
35
Handwritten Digit Recognition
SPL C C C - Significant Difference
36
Handwritten Digit Recognition
SPL C C C - Significant Difference
37
Feature (x,y,h) - Ng and Cardie, ACL 2002
Motif Finding Input x - DNA Sequence Output y Y Y = {0, 1} Latent h - Motif Location - 0/1 Loss Feature (x,y,h) - Ng and Cardie, ACL 2002
38
Motif Finding UniProbe Dataset 40,000 sequences 50/50 train/test split
5 folds
39
Motif Finding Average Hamming Distance of Inferred Motifs SPL SPL SPL
40
Motif Finding SPL Objective Value
41
Motif Finding SPL Test Error
42
Noun Phrase Coreference
Input x - Nouns Output y - Clustering Latent h - Spanning Forest over Nouns Feature (x,y,h) - Yu and Joachims, ICML 2009
43
Noun Phrase Coreference
MUC6 Dataset 60 documents 50/50 train/test split 1 predefined fold
44
Noun Phrase Coreference
MITRE Loss Pairwise Loss - Significant Improvement - Significant Decrement
45
Noun Phrase Coreference
SPL MITRE Loss SPL Pairwise Loss
46
Noun Phrase Coreference
SPL MITRE Loss SPL Pairwise Loss
47
Summary Automatic Self-Paced Learning Concave-Biconvex Procedure
Generalization to other Latent models Expectation-Maximization E-step remains the same M-step includes indicator variables vi Kumar, Packer and Koller, NIPS 2010
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.