Download presentation
Presentation is loading. Please wait.
Published bySuzan Fisher Modified over 9 years ago
1
Kartic Subr Cyril Soler Frédo Durand Edge-preserving Multiscale Image Decomposition based on Local Extrema INRIA, Grenoble Universities MIT CSAIL
2
Multiscale image decomposition + + Medium Pixels Intensity Input Fine Coarse 1D
3
Motivation Detail enhancement Separating fine texture from coarse shading
4
What is detail?
5
Some examples
6
Related work Linear multiscale methods Edge-preserving approaches 1D Signal analysis
7
Related work : Linear multiscale methods Edge-preserving approaches 1D Signal analysis [Burt and Adelson 93] [Rahman and Woodell 97] [Pattanaik et al 98] [Lindeberg 94] Edges not preserved (Causes halos while editing)
8
Related work : Edge-preserving methods 1D Signal analysis [Farbman et al 08] [Fattal et al 07] [Bae et al 07] [Chen et al 07] Edge-aware Assume detail is low contrast
9
Related work: Empirical mode decomposition Linear multiscaleEdge-preserving approaches [Huang et al 98] Developed for 1D signals Detail depends on spatial scale Not edge-aware
10
Related work Edge-preserving approaches 1D Signal analysis Linear multiscale methods
11
Existing edge-preserving image decompositions Input Edge-preserving smoothing (e.g. bilateral filter) Base layer Detail layer (Input – Base) + Iteratively smooth input Recursively smooth base layer OR
12
Input Base layer Detail layer (Input – Base) + Edge-preserving smoothing (e.g. bilateral filter) Edge (preserved) Detail (smoothed) Existing edge-preserving image decompositions Assume detail is low-intensity variation
13
Challenge: Smoothing high-contrast detail Input
14
Challenge: Smoothing high-contrast detail Edge Low-contrast detail High-contrast detail
15
Conservative smoothing (bilateral filter with narrow range-Gaussian) Challenge: Smoothing high-contrast detail Edge preserved? Low-contrast detail smoothed? High-contrast detail smoothed?
16
Challenge: Smoothing high-contrast detail Edge preserved? Low-contrast detail smoothed? High-contrast detail smoothed? Aggressive smoothing (bilateral filter with wide range-Gaussian)
17
Example: Smoothing high-contrast detail Input[Farbman et al 2008] λ= 13, α = 0.2 [Farbman et al 2008] λ= 13, α = 1.2 Detail not smoothed Coarse features smoothed Edge smoothed
18
Our approach: Use local extrema Input Local maxima Local minima Detail = oscillations between local extrema
19
Our approach: Use local extrema Base = Local mean of neighboring extrema
20
Our approach: Use local extrema Local mean of neighboring extrema Edge preserved? Low-contrast detail smoothed? High-contrast detail smoothed?
21
Our detail extraction Input Base layer Detail layer + High-contrast detail smoothed Edges preserved
22
Algorithm Identify local extrema Estimate smoothed mean Detail at multiple scales Input: Image + number of layers
23
Algorithm: Illustrative example
24
Algorithm: Identifying local extrema Extrema detection kernel Local maxima Local minima
25
Algorithm: Estimating smoothed mean 1) Construct envelopes Minimal envelope Interpolation preserves edge [Levin et al 04] Maximal envelope
26
Algorithm: Estimating smoothed mean 2) Average envelopes Estimated mean
27
Algorithm: After one iteration + Input Base Detail
28
Algorithm: Mean at coarser scale Local maxima Local minima Widen extrema detection kernel
29
Algorithm: Mean at coarser scale Minimal envelope Maximal envelope
30
Algorithm: Mean at coarser scale Estimated mean
31
Recap: Detail extraction Identify local extrema Construct envelopes Average envelopes - Input Detail Smoothed mean (Base)
32
Identify local extrema Construct envelopes Average envelopes Recap: Detail extraction Smoothed mean Detail = Input - BaseBase Input
33
Base B 2 Base B 1 Input Detail D 2 Detail D 1 Recap: Multiscale decomposition Layer 1Layer 2Layer 3 Iteration 1 on input Iteration 2 on B 1 Recurse n-1 times for n-layers CoarseFine
34
Results
35
Results: Smoothing Input Smoothed
36
Results: Multiscale decomposition Medium Input Fine Coarse Low contrast edgeHigh contrast detailLow contrast edgeHigh contrast detail
37
Results: Multiscale decomposition Input
38
Results: Multiscale decomposition Fine Coarse
39
Results: Multiscale decomposition Input
40
Results: Multiscale decomposition After one iteration Base layerDetail layer
41
Results: Multiscale decomposition After two iterations Base layerDetail layer
42
Applications: Image equalization
43
Applications: Smoothing hatched images
44
Applications: Coarse illumination transfer
47
Applications: Tone-mapping HDR images
48
Comparison [Farbman et al 2008] Our Result
49
Our smoothing
50
Limitation Input Our Result
51
Conclusion Detail based on local extrema Smoothing high contrast detail Edge-preserving multiscale decomposition
52
Acknowledgements INRIA post-doctoral fellowship Equipe Associée with MIT ‘Flexible Rendering’ Adrien Bousseau & Alexandrina Orzan HFIBMR grant (ANR-07-BLAN-0331) Anonymous reviewers
53
C++ source: http://artis.imag.fr/~Kartic.Subr/research.html
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.