Download presentation
Presentation is loading. Please wait.
Published byJames Boone Modified over 9 years ago
1
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 G. S. Oehrlein*, T. Schwarz-Selinger, K. Schmid, M. Schlüter and W. Jacob Interaction of Deuterium Atoms with Hard a-C:H Films: Isotope Exchange, Soft-layer Formation and Steady-state Erosion * work performed 2007 during sabbatical leave from: Department of Materials Science & Engineering and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 9 th International Workshop on Hydrogen Isotopes in Fusion Reactor Materials, Salamanca, Spain, 3 June 2008
2
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 outline motivation: motivation: fundamental understanding of H/C interaction (tritium removal from carbon surfaces with H 0, D 0 ) strategy: strategy:exposure of a model system (a-C:H, a-C:D) to thermal H 0, D 0 beams at RT surface modification and erosion: ellipsometry isotope exchange: ion beam analysis absolute values (cross sections, penetration depth…)
3
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 experimental 1. film preparation: U sb = -300 V H/(H+C) = 0.33 n C = 9 ·10 22 cm -3, (1.8 g/cm 3 ) Si 001 rf plasma (CH 4, 2Pa) exposure of plasma deposited, hard a-C:H and a-C:D to thermal atomic H 0 or D 0 beams under UHV
4
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 experimental exposure of plasma deposited, hard a-C:H and a-C:D to thermal atomic H 0 or D 0 beams under UHV W. Jacob et al., Review of Scientific Instruments 74, 5123- 5136 (2003). ellipsometry (633 nm) H 2 or D 2 T=2100K H 0, D 0 2. exposure: T substrate 320 K j H,D = 1.3 · 10 15 cm -2 s -1
5
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 experimental 3. ex-situ analysis: nuclear reaction analysis D( 3 He,p) 4 He V.Kh. Alimov et al., Nucl. Instr. Meth. B234, 169 (2005). exposure of plasma deposited, hard a-C:H and a-C:D to thermal atomic H 0 or D 0 beams under UHV 3 He p@ 690 keV, 5 µC p, 4 He @ 135° 0.15 sr mylar
6
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 erosion of a-C:H with H 0 Vietzke and Philipps, Fusion Technol. 15, 108 (1989). Schlüter et al., J. Nuclear Mater. 136, 33 (2008). Horn et al., J. Chem. Phys. Lett. 231, 193 (1994). present study
7
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 model system a-C:H Schwarz-Selinger et al., J. Appl. Phys. 86 (7), 3988 (1999). present study ’hard a-C:H’ growth from CH 4, C 2 H 2, C 2 H 4, C 2 H 6, C 3 H 8, C 4 H 10 … film properties like - hydrogen content - density - refractive index are closely correlated
8
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 model system a-C:H Schwarz-Selinger et al., J. Appl. Phys. 86(7), 3988 (1999). film properties like - hydrogen content - density - refractive index are closely correlated density drop / thickness increase by factor of 2 growth from CH 4, C 2 H 2, C 2 H 4, C 2 H 6, C 3 H 8, C 4 H 10 …
9
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 ellipsometry 2 layer model erosion growth
10
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 ellipsometry 2 layer model erosion growth
11
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 ellipsometry 3 layer model erosion growth hard soft
12
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 ellipsometry 3 layer model erosion growth hard soft
13
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 ellipsometry 3 layer model erosion growth hard soft
14
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 ellipsometry 3 layer model erosion growth hard soft
15
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 ellipsometry 3 layer model erosion growth hard soft
16
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 ellipsometry
17
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 ellipsometry
18
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 NRA results: D 0 (H 0 ) areal density vs. exposure time total uptake of D initial thickness: 20 nm expected D content of a 14 Å thick soft layer: 6·10 15 D 0 /cm 2
19
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 NRA results: D 0 (H 0 ) areal density vs. exposure time loss of D (isotope exchange) total uptake of D initial thickness: 20 nm initial D content of a 14 Å thick hard layer: 5·10 15 D 0 /cm 2
20
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 NRA results: D 0 (H 0 ) areal density vs. exposure time deuteration of extra sites loss of D (isotope exchange) total uptake of D initial thickness: 20 nm
21
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 ellipsometry trajectories for D and H erosion switching between H and D: steady state erosion no difference in optical response erosion @ 650 K ellipsometry does not see isotope exchange
22
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 change in D area density and modified layer thickness uptake of D without optical response isotope exchange
23
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 for a flux density j = 1.3·10 15 D 0 /cm 2 s an initial hydrogen density n H = 0.33 · 12.1·10 22 /cm 3 an uptake of n D = 3·10 15 D/cm 2 in the first 5 minutes: σ = 2·10 -18 cm 2 = 0.02 Å 2 analysis for simple isotope exchange we have: Küppers et al.: abstraction of bonded H: 0.05 Å 2 cm 2
24
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 interaction of H with a-C:H known from literature * : abstraction addition thermal activated erosion * = 0.05 Å 2 * = 1.3 Å 2 (4.5 Å 2 ) *J. Küppers, Surf. Science Reports 22, 249 (1995)
25
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 1.4 nm thickness, deuteration of extra sites –A) based on total number of C atoms in layer –B) formation of C-D2 from C-D i.e., comparable to D-exchange Both steps must be going on. analysis σ extra sites = 6·10 -19 cm 2 = 0.006 Å 2 σ extra sites = 1.3·10 -18 cm 2 = 0.013 Å 2
26
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 3 stages of D interaction with a-C:H (at 50 °C) 1.isotope exchange complete after ~ 30 min ( j = 2·10 18 D 0 /cm 2 ) comparison of the cross-section for this process with literature values for H interaction with C:H shows that this corresponds to the cross-section of hydrogen abstraction from the C:H surface 2.creation of new C-D bonds soft a-C:D layer formation occurs up to ~ 200 min ( j = 2·10 19 D 0 /cm 2 ) 3.erosion of a-C:H, a soft a-C:D layer “remains” on the substrate, with roughly constant thickness (1.4 nm)
27
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008
28
interaction of H with a-C:H known from literature * : thermal activated erosion k = f(T) erosion ! H fluence ! *J. Küppers, Surf. Science Reports 22, 249 (1995)
29
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 sp 2 Hydration and erosion circle: Horn et al., Chem. Phys. Lett. 231, 193 (1994) Zecho et alJ. Phys. Chem. B 105 (2001). Chemical Erosion: microscopic model 1)chemisorption of H on sp 2 site H = 1.3 Å 2 H sp x sp 3 H = 1.3 Å 2 H CH 3 2)chemisorption of H on sp x site (hydration) 3)abstraction of H to form H 2 H H 2 = 0.05 Å 2 CH 3 E act =1.7 eV 5)relaxation back to sp 2 above 750 K 6)direct thermal decomposition to sp 2 above 900 K with E act =2.4 eV 4 a) thermal release of CH 3 radicals from activated sites above 400 K E act =1.7 eV CH 3 4 b) chemisorption of H on sp x site = 1.3 Å 2 H
30
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 Chemical erosion: structure dependence E. Vietzke et al., Surf. Coat. Technol. 47 (1991) 156-161 Total Y of H o on films of: a-C:H (plasma-deposited), pre-irradiated graphite, graphite and diamond disorder order 1000 x reactivity of the surface depends critically on the surface structure
31
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 mechanistic picture
32
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008
33
ellipsometry
34
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 ellipsometry
35
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 change in D area density and modified layer thickness uptake of D without optical response isotope exchange
36
Salamanca.ppt, © Thomas Schwarz-Selinger, 03. Juni 2008 for a flux density j = 1.3·10 15 D 0 /cm 2 s an initial hydrogen density n H = 0.33 · 12.1·10 22 /cm 3 an uptake of n D = 3·10 15 D/cm 2 in the first 5 minutes: σ = 2·10 -18 cm 2 = 0.02 Å 2 analysis for simple isotope exchange we have: Küppers et al.: abstraction of bonded H: 0.02 Å 2 cm 2
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.