Download presentation
Presentation is loading. Please wait.
Published bySydney Willis Modified over 11 years ago
1
Concurrent Queues and Stacks Companion slides for The Art of Multiprocessor Programming by Maurice Herlihy & Nir Shavit
2
Art of Multiprocessor Programming22 The Five-Fold Path Coarse-grained locking Fine-grained locking Optimistic synchronization Lazy synchronization Lock-free synchronization
3
Art of Multiprocessor Programming33 Another Fundamental Problem We told you about –Sets implemented by linked lists Next: queues Next: stacks
4
Art of Multiprocessor Programming44 Queues & Stacks pool of items
5
Art of Multiprocessor Programming55 Queues deq()/ enq( ) Total order First in First out
6
Art of Multiprocessor Programming66 Stacks pop()/ push( ) Total order Last in First out
7
Art of Multiprocessor Programming77 Bounded Fixed capacity Good when resources an issue
8
Art of Multiprocessor Programming88 Unbounded Unlimited capacity Often more convenient …
9
Art of Multiprocessor Programming9 Blocking zzz … Block on attempt to remove from empty stack or queue
10
Art of Multiprocessor Programming10 Blocking zzz … Block on attempt to add to full bounded stack or queue
11
Art of Multiprocessor Programming11 Non-Blocking Ouch! Throw exception on attempt to remove from empty stack or queue
12
Art of Multiprocessor Programming12 This Lecture Queue –Bounded, blocking, lock-based –Unbounded, non-blocking, lock-free Stack –Unbounded, non-blocking lock-free –Elimination-backoff algorithm
13
Art of Multiprocessor Programming13 Queue: Concurrency enq(x) y=deq() enq() and deq() work at different ends of the object tailhead
14
Art of Multiprocessor Programming14 Concurrency enq(x) Challenge: what if the queue is empty or full? y=deq() tail head
15
Art of Multiprocessor Programming15 Bounded Queue Sentinel head tail
16
Art of Multiprocessor Programming16 Bounded Queue head tail First actual item
17
Art of Multiprocessor Programming17 Bounded Queue head tail Lock out other deq() calls deqLock
18
Art of Multiprocessor Programming18 Bounded Queue head tail Lock out other enq() calls deqLock enqLock
19
Art of Multiprocessor Programming 1919 Not Done Yet head tail deqLock enqLock Need to tell whether queue is full or empty
20
Art of Multiprocessor Programming20 Not Done Yet head tail deqLock enqLock Max size is 8 items size 1
21
Art of Multiprocessor Programming21 Not Done Yet head tail deqLock enqLock Incremented by enq() Decremented by deq() size 1
22
Art of Multiprocessor Programming22 Enqueuer head tail deqLock enqLock size 1 Lock enqLock
23
Art of Multiprocessor Programming23 Enqueuer head tail deqLock enqLock size 1 Read size OK
24
Art of Multiprocessor Programming24 Enqueuer head tail deqLock enqLock size 1 No need to lock tail
25
Art of Multiprocessor Programming25 Enqueuer head tail deqLock enqLock size 1 Enqueue Node
26
Art of Multiprocessor Programming26 Enqueuer head tail deqLock enqLock size 1 2 getAndincrement()
27
Art of Multiprocessor Programming27 Enqueuer head tail deqLock enqLock size 8 Release lock 2
28
Art of Multiprocessor Programming28 Enqueuer head tail deqLock enqLock size 2 If queue was empty, notify waiting dequeuers
29
Art of Multiprocessor Programming29 Unsuccesful Enqueuer head tail deqLock enqLock size 8 Uh-oh Read size …
30
Art of Multiprocessor Programming30 Dequeuer head tail deqLock enqLock size 2 Lock deqLock
31
Art of Multiprocessor Programming31 Dequeuer head tail deqLock enqLock size 2 Read sentinels next field OK
32
Art of Multiprocessor Programming32 Dequeuer head tail deqLock enqLock size 2 Read value
33
Art of Multiprocessor Programming33 Dequeuer head tail deqLock enqLock size 2 Make first Node new sentinel
34
Art of Multiprocessor Programming34 Dequeuer head tail deqLock enqLock size 1 Decrement size
35
Art of Multiprocessor Programming35 Dequeuer head tail deqLock enqLock size 1 Release deqLock
36
Art of Multiprocessor Programming36 Unsuccesful Dequeuer head tail deqLock enqLock size 0 Read sentinels next field uh-oh
37
Art of Multiprocessor Programming37 Bounded Queue public class BoundedQueue { ReentrantLock enqLock, deqLock; Condition notEmptyCondition, notFullCondition; AtomicInteger size; Node head; Node tail; int capacity; enqLock = new ReentrantLock(); notFullCondition = enqLock.newCondition(); deqLock = new ReentrantLock(); notEmptyCondition = deqLock.newCondition(); }
38
Art of Multiprocessor Programming38 Bounded Queue public class BoundedQueue { ReentrantLock enqLock, deqLock; Condition notEmptyCondition, notFullCondition; AtomicInteger size; Node head; Node tail; int capacity; enqLock = new ReentrantLock(); notFullCondition = enqLock.newCondition(); deqLock = new ReentrantLock(); notEmptyCondition = deqLock.newCondition(); } enq & deq locks
39
Art of Multiprocessor Programming39 Digression: Monitor Locks Java synchronized objects and ReentrantLocks are monitors Allow blocking on a condition rather than spinning Threads: –acquire and release lock –wait on a condition
40
Art of Multiprocessor Programming40 public interface Lock { void lock(); void lockInterruptibly() throws InterruptedException; boolean tryLock(); boolean tryLock(long time, TimeUnit unit); Condition newCondition(); void unlock; } The Java Lock Interface Acquire lock
41
Art of Multiprocessor Programming41 public interface Lock { void lock(); void lockInterruptibly() throws InterruptedException; boolean tryLock(); boolean tryLock(long time, TimeUnit unit); Condition newCondition(); void unlock; } The Java Lock Interface Release lock
42
Art of Multiprocessor Programming42 public interface Lock { void lock(); void lockInterruptibly() throws InterruptedException; boolean tryLock(); boolean tryLock(long time, TimeUnit unit); Condition newCondition(); void unlock; } The Java Lock Interface Try for lock, but not too hard
43
Art of Multiprocessor Programming43 public interface Lock { void lock(); void lockInterruptibly() throws InterruptedException; boolean tryLock(); boolean tryLock(long time, TimeUnit unit); Condition newCondition(); void unlock; } The Java Lock Interface Create condition to wait on
44
Art of Multiprocessor Programming44 The Java Lock Interface public interface Lock { void lock(); void lockInterruptibly() throws InterruptedException; boolean tryLock(); boolean tryLock(long time, TimeUnit unit); Condition newCondition(); void unlock; } Never mind what this method does
45
Art of Multiprocessor Programming45 Lock Conditions public interface Condition { void await(); boolean await(long time, TimeUnit unit); … void signal(); void signalAll(); }
46
Art of Multiprocessor Programming46 public interface Condition { void await(); boolean await(long time, TimeUnit unit); … void signal(); void signalAll(); } Lock Conditions Release lock and wait on condition
47
Art of Multiprocessor Programming47 public interface Condition { void await(); boolean await(long time, TimeUnit unit); … void signal(); void signalAll(); } Lock Conditions Wake up one waiting thread
48
Art of Multiprocessor Programming48 public interface Condition { void await(); boolean await(long time, TimeUnit unit); … void signal(); void signalAll(); } Lock Conditions Wake up all waiting threads
49
Art of Multiprocessor Programming49 Await Releases lock associated with q Sleeps (gives up processor) Awakens (resumes running) Reacquires lock & returns q.await()
50
Art of Multiprocessor Programming50 Signal Awakens one waiting thread –Which will reacquire lock q.signal();
51
Art of Multiprocessor Programming51 Signal All Awakens all waiting threads –Which will each reacquire lock q.signalAll();
52
Art of Multiprocessor Programming52 A Monitor Lock Critical Section waiting room lock() unlock()
53
Art of Multiprocessor Programming53 Unsuccessful Deq Critical Section waiting room lock() await() deq() Oh no, empty!
54
Art of Multiprocessor Programming54 Another One Critical Section waiting room lock() await() deq() Oh no, empty!
55
Art of Multiprocessor Programming55 Enqueuer to the Rescue Critical Section waiting room lock() signalAll() enq( ) unlock() Yawn!
56
Art of Multiprocessor Programming56 Yawn! Monitor Signalling Critical Section waiting room Yawn! Awakened thread might still lose lock to outside contender…
57
Art of Multiprocessor Programming57 Dequeuers Signalled Critical Section waiting room Found it Yawn!
58
Art of Multiprocessor Programming58 Yawn! Dequeuers Signaled Critical Section waiting room Still empty!
59
Art of Multiprocessor Programming59 Dollar Short + Day Late Critical Section waiting room
60
Art of Multiprocessor Programming60 public class Queue { int head = 0, tail = 0; T[QSIZE] items; public synchronized T deq() { while (tail – head == 0) wait(); T result = items[head % QSIZE]; head++; notifyAll(); return result; } … }} Java Synchronized Methods
61
Art of Multiprocessor Programming61 public class Queue { int head = 0, tail = 0; T[QSIZE] items; public synchronized T deq() { while (tail – head == 0) wait(); T result = items[head % QSIZE]; head++; notifyAll(); return result; } … }} Java Synchronized Methods Each object has an implicit lock with an implicit condition
62
Art of Multiprocessor Programming62 public class Queue { int head = 0, tail = 0; T[QSIZE] items; public synchronized T deq() { while (tail – head == 0) wait(); T result = items[head % QSIZE]; head++; notifyAll(); return result; } … }} Java Synchronized Methods Lock on entry, unlock on return
63
Art of Multiprocessor Programming63 public class Queue { int head = 0, tail = 0; T[QSIZE] items; public synchronized T deq() { while (tail – head == 0) wait(); T result = items[head % QSIZE]; head++; this.notifyAll(); return result; } … }} Java Synchronized Methods Wait on implicit condition
64
Art of Multiprocessor Programming64 public class Queue { int head = 0, tail = 0; T[QSIZE] items; public synchronized T deq() { while (tail – head == 0) this.wait(); T result = items[head % QSIZE]; head++; notifyAll(); return result; } … }} Java Synchronized Methods Signal all threads waiting on condition
65
Art of Multiprocessor Programming65 (Pop!) The Bounded Queue public class BoundedQueue { ReentrantLock enqLock, deqLock; Condition notEmptyCondition, notFullCondition; AtomicInteger size; Node head; Node tail; int capacity; enqLock = new ReentrantLock(); notFullCondition = enqLock.newCondition(); deqLock = new ReentrantLock(); notEmptyCondition = deqLock.newCondition(); }
66
Art of Multiprocessor Programming66 Bounded Queue Fields public class BoundedQueue { ReentrantLock enqLock, deqLock; Condition notEmptyCondition, notFullCondition; AtomicInteger size; Node head; Node tail; int capacity; enqLock = new ReentrantLock(); notFullCondition = enqLock.newCondition(); deqLock = new ReentrantLock(); notEmptyCondition = deqLock.newCondition(); } Enq & deq locks
67
Art of Multiprocessor Programming67 Bounded Queue Fields public class BoundedQueue { ReentrantLock enqLock, deqLock; Condition notEmptyCondition, notFullCondition; AtomicInteger size; Node head; Node tail; int capacity; enqLock = new ReentrantLock(); notFullCondition = enqLock.newCondition(); deqLock = new ReentrantLock(); notEmptyCondition = deqLock.newCondition(); } Enq locks associated condition
68
Art of Multiprocessor Programming68 Bounded Queue Fields public class BoundedQueue { ReentrantLock enqLock, deqLock; Condition notEmptyCondition, notFullCondition; AtomicInteger size; Node head; Node tail; int capacity; enqLock = new ReentrantLock(); notFullCondition = enqLock.newCondition(); deqLock = new ReentrantLock(); notEmptyCondition = deqLock.newCondition(); } size: 0 to capacity
69
Art of Multiprocessor Programming69 Bounded Queue Fields public class BoundedQueue { ReentrantLock enqLock, deqLock; Condition notEmptyCondition, notFullCondition; AtomicInteger size; Node head; Node tail; int capacity; enqLock = new ReentrantLock(); notFullCondition = enqLock.newCondition(); deqLock = new ReentrantLock(); notEmptyCondition = deqLock.newCondition(); } Head and Tail
70
Art of Multiprocessor Programming70 Enq Method Part One public void enq(T x) { boolean mustWakeDequeuers = false; enqLock.lock(); try { while (size.get() == Capacity) notFullCondition.await(); Node e = new Node(x); tail.next = e; tail = tail.next; if (size.getAndIncrement() == 0) mustWakeDequeuers = true; } finally { enqLock.unlock(); } … }
71
Art of Multiprocessor Programming71 public void enq(T x) { boolean mustWakeDequeuers = false; enqLock.lock(); try { while (size.get() == capacity) notFullCondition.await(); Node e = new Node(x); tail.next = e; tail = tail.next; if (size.getAndIncrement() == 0) mustWakeDequeuers = true; } finally { enqLock.unlock(); } … } Enq Method Part One Lock and unlock enq lock
72
Art of Multiprocessor Programming72 public void enq(T x) { boolean mustWakeDequeuers = false; enqLock.lock(); try { while (size.get() == capacity) notFullCondition.await(); Node e = new Node(x); tail.next = e; tail = tail.next; if (size.getAndIncrement() == 0) mustWakeDequeuers = true; } finally { enqLock.unlock(); } … } Enq Method Part One Wait while queue is full …
73
Art of Multiprocessor Programming73 public void enq(T x) { boolean mustWakeDequeuers = false; enqLock.lock(); try { while (size.get() == capacity) notFullCondition.await(); Node e = new Node(x); tail.next = e; tail = tail.next; if (size.getAndIncrement() == 0) mustWakeDequeuers = true; } finally { enqLock.unlock(); } … } Enq Method Part One when await() returns, you might still fail the test !
74
Art of Multiprocessor Programming74 public void enq(T x) { boolean mustWakeDequeuers = false; enqLock.lock(); try { while (size.get() == capacity) notFullCondition.await(); Node e = new Node(x); tail.next = e; tail = tail.next; if (size.getAndIncrement() == 0) mustWakeDequeuers = true; } finally { enqLock.unlock(); } … } Be Afraid After the loop: how do we know the queue wont become full again?
75
Art of Multiprocessor Programming75 public void enq(T x) { boolean mustWakeDequeuers = false; enqLock.lock(); try { while (size.get() == capacity) notFullCondition.await(); Node e = new Node(x); tail.next = e; tail = tail.next; if (size.getAndIncrement() == 0) mustWakeDequeuers = true; } finally { enqLock.unlock(); } … } Enq Method Part One Add new node
76
Art of Multiprocessor Programming76 public void enq(T x) { boolean mustWakeDequeuers = false; enqLock.lock(); try { while (size.get() == capacity) notFullCondition.await(); Node e = new Node(x); tail.next = e; tail = tail.next; if (size.getAndIncrement() == 0) mustWakeDequeuers = true; } finally { enqLock.unlock(); } … } Enq Method Part One If queue was empty, wake frustrated dequeuers
77
Art of Multiprocessor Programming77 Beware Lost Wake-Ups Critical Section waiting room lock() Queue empty so signal () enq( ) unlock() Yawn!
78
Art of Multiprocessor Programming78 Lost Wake-Up Critical Section waiting room lock() enq( ) unlock() Yawn! Queue not empty so no need to signal
79
Art of Multiprocessor Programming79 Lost Wake-Up Critical Section waiting room Yawn!
80
Art of Multiprocessor Programming80 Lost Wake-Up Critical Section waiting room Found it
81
Art of Multiprocessor Programming81 Whats Wrong Here? Critical Section waiting room Still waiting ….!
82
Art of Multiprocessor Programming82 Solution to Lost Wakeup Always use –signalAll() and notifyAll() Not –signal() and notify() 82
83
Art of Multiprocessor Programming83 Enq Method Part Deux public void enq(T x) { … if (mustWakeDequeuers) { deqLock.lock(); try { notEmptyCondition.signalAll(); } finally { deqLock.unlock(); }
84
Art of Multiprocessor Programming84 Enq Method Part Deux public void enq(T x) { … if (mustWakeDequeuers) { deqLock.lock(); try { notEmptyCondition.signalAll(); } finally { deqLock.unlock(); } Are there dequeuers to be signaled?
85
Art of Multiprocessor Programming85 public void enq(T x) { … if (mustWakeDequeuers) { deqLock.lock(); try { notEmptyCondition.signalAll(); } finally { deqLock.unlock(); } Enq Method Part Deux Lock and unlock deq lock
86
Art of Multiprocessor Programming86 public void enq(T x) { … if (mustWakeDequeuers) { deqLock.lock(); try { notEmptyCondition.signalAll(); } finally { deqLock.unlock(); } Enq Method Part Deux Signal dequeuers that queue is no longer empty
87
Art of Multiprocessor Programming87 The Enq() & Deq() Methods Share no locks –Thats good But do share an atomic counter –Accessed on every method call –Thats not so good Can we alleviate this bottleneck?
88
Art of Multiprocessor Programming88 Split the Counter The enq() method –Increments only –Cares only if value is capacity The deq() method –Decrements only –Cares only if value is zero
89
Art of Multiprocessor Programming89 Split Counter Enqueuer increments enqSize Dequeuer decrements deqSize When enqueuer runs out –Locks deqLock –computes size = enqSize - DeqSize Intermittent synchronization –Not with each method call –Need both locks! (careful …)
90
Art of Multiprocessor Programming90 A Lock-Free Queue Sentinel head tail
91
Art of Multiprocessor Programming91 Compare and Set CAS
92
Art of Multiprocessor Programming92 Enqueue head tail enq( )
93
Art of Multiprocessor Programming93 Enqueue head tail
94
Art of Multiprocessor Programming94 Logical Enqueue head tail CAS
95
Art of Multiprocessor Programming95 Physical Enqueue head tail CAS
96
Art of Multiprocessor Programming96 Enqueue These two steps are not atomic The tail field refers to either –Actual last Node (good) –Penultimate Node (not so good) Be prepared!
97
Art of Multiprocessor Programming97 Enqueue What do you do if you find –A trailing tail? Stop and help fix it –If tail node has non-null next field –CAS the queues tail field to tail.next As in the universal construction
98
Art of Multiprocessor Programming98 When CASs Fail During logical enqueue –Abandon hope, restart –Still lock-free (why?) During physical enqueue –Ignore it (why?)
99
Art of Multiprocessor Programming99 Dequeuer head tail Read value
100
Art of Multiprocessor Programming100 Dequeuer head tail Make first Node new sentinel CAS
101
Art of Multiprocessor Programming101 Memory Reuse? What do we do with nodes after we dequeue them? Java: let garbage collector deal? Suppose there is no GC, or we prefer not to use it?
102
Art of Multiprocessor Programming102 Dequeuer head tail CAS Can recycle
103
Art of Multiprocessor Programming103 Simple Solution Each thread has a free list of unused queue nodes Allocate node: pop from list Free node: push onto list Deal with underflow somehow …
104
Art of Multiprocessor Programming104 Why Recycling is Hard Free pool headtail Want to redirect head from gray to red zzz…
105
Art of Multiprocessor Programming105 Both Nodes Reclaimed Free pool zzz headtail
106
Art of Multiprocessor Programming106 One Node Recycled Free pool Yawn! headtail
107
Art of Multiprocessor Programming107 Why Recycling is Hard Free pool CAS headtail OK, here I go!
108
Art of Multiprocessor Programming108 Recycle FAIL Free pool zOMG what went wrong? headtail
109
Art of Multiprocessor Programming109 The Dreaded ABA Problem headtail Head reference has value A Thread reads value A Head reference has value A Thread reads value A
110
Art of Multiprocessor Programming110 Dreaded ABA continued zzz headtail Head reference has value B Node A freed Head reference has value B Node A freed
111
Art of Multiprocessor Programming111 Dreaded ABA continued Yawn! headtail Head reference has value A again Node A recycled and reinitialized Head reference has value A again Node A recycled and reinitialized
112
Art of Multiprocessor Programming112 Dreaded ABA continued CAS headtail CAS succeeds because references match, even though references meaning has changed CAS succeeds because references match, even though references meaning has changed
113
Art of Multiprocessor Programming113 The Dreaded ABA FAIL Is a result of CAS() semantics –I blame Sun, Intel, AMD, … Not with Load-Locked/Store-Conditional –Good for IBM?
114
Art of Multiprocessor Programming114 Dreaded ABA – A Solution Tag each pointer with a counter Unique over lifetime of node Pointer size vs word size issues Overflow? –Dont worry be happy? –Bounded tags? AtomicStampedReference class
115
Art of Multiprocessor Programming115 Atomic Stamped Reference AtomicStampedReference class –Java.util.concurrent.atomic package address S Stamp Reference Can get reference & stamp atomically
116
Art of Multiprocessor Programming116 Concurrent Stack Methods –push(x) –pop() Last-in, First-out (LIFO) order Lock-Free!
117
Art of Multiprocessor Programming117 Empty Stack Top
118
Art of Multiprocessor Programming118 Push Top
119
Art of Multiprocessor Programming119 Push Top CAS
120
Art of Multiprocessor Programming120 Push Top
121
Art of Multiprocessor Programming121 Push Top
122
Art of Multiprocessor Programming122 Push Top
123
Art of Multiprocessor Programming123 Push Top CAS
124
Art of Multiprocessor Programming124 Push Top
125
Art of Multiprocessor Programming125 Pop Top
126
Art of Multiprocessor Programming126 Pop Top CAS
127
Art of Multiprocessor Programming127 Pop Top CAS mine!
128
Art of Multiprocessor Programming128 Pop Top CAS
129
Art of Multiprocessor Programming129 Pop Top
130
Art of Multiprocessor Programming130 public class LockFreeStack { private AtomicReference top = new AtomicReference(null); public boolean tryPush(Node node){ Node oldTop = top.get(); node.next = oldTop; return(top.compareAndSet(oldTop, node)) } public void push(T value) { Node node = new Node(value); while (true) { if (tryPush(node)) { return; } else backoff.backoff(); }} Lock-free Stack
131
Art of Multiprocessor Programming131 public class LockFreeStack { private AtomicReference top = new AtomicReference(null); public Boolean tryPush(Node node){ Node oldTop = top.get(); node.next = oldTop; return(top.compareAndSet(oldTop, node)) } public void push(T value) { Node node = new Node(value); while (true) { if (tryPush(node)) { return; } else backoff.backoff() }} Lock-free Stack tryPush attempts to push a node
132
Art of Multiprocessor Programming132 public class LockFreeStack { private AtomicReference top = new AtomicReference(null); public boolean tryPush(Node node){ Node oldTop = top.get(); node.next = oldTop; return(top.compareAndSet(oldTop, node)) } public void push(T value) { Node node = new Node(value); while (true) { if (tryPush(node)) { return; } else backoff.backoff() }} Lock-free Stack Read top value
133
Art of Multiprocessor Programming133 public class LockFreeStack { private AtomicReference top = new AtomicReference(null); public boolean tryPush(Node node){ Node oldTop = top.get(); node.next = oldTop; return(top.compareAndSet(oldTop, node)) } public void push(T value) { Node node = new Node(value); while (true) { if (tryPush(node)) { return; } else backoff.backoff() }} Lock-free Stack current top will be new nodes successor
134
Art of Multiprocessor Programming134 public class LockFreeStack { private AtomicReference top = new AtomicReference(null); public boolean tryPush(Node node){ Node oldTop = top.get(); node.next = oldTop; return(top.compareAndSet(oldTop, node)) } public void push(T value) { Node node = new Node(value); while (true) { if (tryPush(node)) { return; } else backoff.backoff() }} Lock-free Stack Try to swing top, return success or failure
135
Art of Multiprocessor Programming135 public class LockFreeStack { private AtomicReference top = new AtomicReference(null); public boolean tryPush(Node node){ Node oldTop = top.get(); node.next = oldTop; return(top.compareAndSet(oldTop, node)) } public void push(T value) { Node node = new Node(value); while (true) { if (tryPush(node)) { return; } else backoff.backoff() }} Lock-free Stack Push calls tryPush
136
Art of Multiprocessor Programming136 public class LockFreeStack { private AtomicReference top = new AtomicReference(null); public boolean tryPush(Node node){ Node oldTop = top.get(); node.next = oldTop; return(top.compareAndSet(oldTop, node)) } public void push(T value) { Node node = new Node(value); while (true) { if (tryPush(node)) { return; } else backoff.backoff() }} Lock-free Stack Create new node
137
Art of Multiprocessor Programming137 public class LockFreeStack { private AtomicReference top = new AtomicReference(null); public boolean tryPush(Node node){ Node oldTop = top.get(); node.next = oldTop; return(top.compareAndSet(oldTop, node)) } public void push(T value) { Node node = new Node(value); while (true) { if (tryPush(node)) { return; } else backoff.backoff() }} Lock-free Stack If tryPush() fails, back off before retrying
138
Art of Multiprocessor Programming138 Lock-free Stack Good –No locking Bad –Without GC, fear ABA –Without backoff, huge contention at top –In any case, no parallelism
139
Art of Multiprocessor Programming139 Big Question Are stacks inherently sequential? Reasons why –Every pop() call fights for top item Reasons why not –Stay tuned …
140
Art of Multiprocessor Programming140 Elimination-Backoff Stack How to –turn contention into parallelism Replace familiar –exponential backoff With alternative –elimination-backoff
141
Art of Multiprocessor Programming141 Observation Push( ) Pop() linearizable stack After an equal number of pushes and pops, stack stays the same After an equal number of pushes and pops, stack stays the same Yes!
142
Art of Multiprocessor Programming142 Idea: Elimination Array Push( ) Pop() stack Pick at random Pick at random Elimination Array
143
Art of Multiprocessor Programming143 Push Collides With Pop Push( ) Pop() stack continue No need to access stack No need to access stack Yes!
144
Art of Multiprocessor Programming144 No Collision Push( ) Pop() stack If no collision, access stack If no collision, access stack If pushes collide or pops collide access stack
145
Art of Multiprocessor Programming145 Elimination-Backoff Stack Lock-free stack + elimination array Access Lock-free stack, –If uncontended, apply operation –if contended, back off to elimination array and attempt elimination
146
Art of Multiprocessor Programming146 Elimination-Backoff Stack Push( ) Pop() Top CAS If CAS fails, back off
147
Art of Multiprocessor Programming147 Dynamic Range and Delay Push( ) Pick random range and max waiting time based on level of contention encountered
148
Art of Multiprocessor Programming148 Linearizability Un-eliminated calls –linearized as before Eliminated calls: –linearize pop() immediately after matching push() Combination is a linearizable stack
149
Art of Multiprocessor Programming149 Un-Eliminated Linearizability push(v 1 ) time linearizable push(v 1 ) pop(v 1 )
150
Art of Multiprocessor Programming150 Eliminated Linearizability pop(v 2 )push(v 1 ) push(v 2 ) time push(v 2 ) pop(v 2 ) push(v 1 ) pop(v 1 ) Collision Point Red calls are eliminated pop(v 1 ) linearizable
151
Art of Multiprocessor Programming151 Backoff Has Dual Effect Elimination introduces parallelism Backoff to array cuts contention on lock- free stack Elimination in array cuts down number of threads accessing lock-free stack
152
Art of Multiprocessor Programming152 public class EliminationArray { private static final int duration =...; private static final int timeUnit =...; Exchanger [] exchanger; public EliminationArray(int capacity) { exchanger = new Exchanger[capacity]; for (int i = 0; i < capacity; i++) exchanger[i] = new Exchanger (); … } … } Elimination Array
153
Art of Multiprocessor Programming153 public class EliminationArray { private static final int duration =...; private static final int timeUnit =...; Exchanger [] exchanger; public EliminationArray(int capacity) { exchanger = new Exchanger[capacity]; for (int i = 0; i < capacity; i++) exchanger[i] = new Exchanger (); … } … } Elimination Array An array of Exchangers
154
Art of Multiprocessor Programming154 public class Exchanger { AtomicStampedReference slot = new AtomicStampedReference (null, 0); Digression: A Lock-Free Exchanger
155
Art of Multiprocessor Programming155 public class Exchanger { AtomicStampedReference slot = new AtomicStampedReference (null, 0); A Lock-Free Exchanger Atomically modifiable reference + status
156
Art of Multiprocessor Programming156 Atomic Stamped Reference AtomicStampedReference class –Java.util.concurrent.atomic package In C or C++: address S reference stamp
157
Art of Multiprocessor Programming157 Extracting Reference & Stamp public T get(int[] stampHolder);
158
Art of Multiprocessor Programming158 Extracting Reference & Stamp public T get(int[] stampHolder); Returns reference to object of type T Returns stamp at array index 0!
159
Art of Multiprocessor Programming159 Exchanger Status enum Status {EMPTY, WAITING, BUSY};
160
Art of Multiprocessor Programming160 Exchanger Status enum Status {EMPTY, WAITING, BUSY}; Nothing yet
161
enum Status {EMPTY, WAITING, BUSY}; Art of Multiprocessor Programming161 Exchange Status Nothing yet One thread is waiting for rendez-vous
162
Art of Multiprocessor Programming162 Exchange Status enum Status {EMPTY, WAITING, BUSY}; Nothing yet One thread is waiting for rendez-vous Other threads busy with rendez-vous
163
Art of Multiprocessor Programming163 public T Exchange(T myItem, long nanos) throws TimeoutException { long timeBound = System.nanoTime() + nanos; int[] stampHolder = {EMPTY}; while (true) { if (System.nanoTime() > timeBound) throw new TimeoutException(); T herItem = slot.get(stampHolder); int stamp = stampHolder[0]; switch(stamp) { case EMPTY: … // slot is free case WAITING: … // someone waiting for me case BUSY: … // others exchanging } The Exchange
164
Art of Multiprocessor Programming164 public T Exchange(T myItem, long nanos) throws TimeoutException { long timeBound = System.nanoTime() + nanos; int[] stampHolder = {EMPTY}; while (true) { if (System.nanoTime() > timeBound) throw new TimeoutException(); T herItem = slot.get(stampHolder); int stamp = stampHolder[0]; switch(stamp) { case EMPTY: … // slot is free case WAITING: … // someone waiting for me case BUSY: … // others exchanging } The Exchange Item and timeout
165
Art of Multiprocessor Programming165 public T Exchange(T myItem, long nanos) throws TimeoutException { long timeBound = System.nanoTime() + nanos; int[] stampHolder = {EMPTY}; while (true) { if (System.nanoTime() > timeBound) throw new TimeoutException(); T herItem = slot.get(stampHolder); int stamp = stampHolder[0]; switch(stamp) { case EMPTY: … // slot is free case WAITING: … // someone waiting for me case BUSY: … // others exchanging } The Exchange Array holds status
166
Art of Multiprocessor Programming166 public T Exchange(T myItem, long nanos) throws TimeoutException { long timeBound = System.nanoTime() + nanos; int[] stampHolder = {0}; while (true) { if (System.nanoTime() > timeBound) throw new TimeoutException(); T herItem = slot.get(stampHolder); int stamp = stampHolder[0]; switch(stamp) { case EMPTY: // slot is free case WAITING: // someone waiting for me case BUSY: // others exchanging } }} The Exchange Loop until timeout
167
Art of Multiprocessor Programming167 public T Exchange(T myItem, long nanos) throws TimeoutException { long timeBound = System.nanoTime() + nanos; int[] stampHolder = {0}; while (true) { if (System.nanoTime() > timeBound) throw new TimeoutException(); T herItem = slot.get(stampHolder); int stamp = stampHolder[0]; switch(stamp) { case EMPTY: // slot is free case WAITING: // someone waiting for me case BUSY: // others exchanging } }} The Exchange Get others item and status
168
Art of Multiprocessor Programming168 public T Exchange(T myItem, long nanos) throws TimeoutException { long timeBound = System.nanoTime() + nanos; int[] stampHolder = {0}; while (true) { if (System.nanoTime() > timeBound) throw new TimeoutException(); T herItem = slot.get(stampHolder); int stamp = stampHolder[0]; switch(stamp) { case EMPTY: … // slot is free case WAITING: … // someone waiting for me case BUSY: … // others exchanging } }} The Exchange An Exchanger has three possible states
169
Art of Multiprocessor Programming169 Lock-free Exchanger
170
Art of Multiprocessor Programming170 Lock-free Exchanger CAS
171
Art of Multiprocessor Programming171 Lock-free Exchanger
172
Art of Multiprocessor Programming172 Lock-free Exchanger In search of partner …
173
Art of Multiprocessor Programming173 Lock-free Exchanger Slot Still waiting … Try to exchange item and set status to BUSY CAS
174
Art of Multiprocessor Programming174 Lock-free Exchanger Slot Partner showed up, take item and reset to EMPTY item status
175
Art of Multiprocessor Programming175 EMPTY Lock-free Exchanger Slot item status Partner showed up, take item and reset to EMPTY
176
Art of Multiprocessor Programming176 case EMPTY: // slot is free if (slot.CAS(herItem, myItem, EMPTY, WAITING)) { while (System.nanoTime() < timeBound){ herItem = slot.get(stampHolder); if (stampHolder[0] == BUSY) { slot.set(null, EMPTY); return herItem; }} if (slot.CAS(myItem, null, WAITING, EMPTY)){ throw new TimeoutException(); } else { herItem = slot.get(stampHolder); slot.set(null, EMPTY); return herItem; } } break; Exchanger State EMPTY
177
Art of Multiprocessor Programming177 case EMPTY: // slot is free if (slot.CAS(herItem, myItem, EMPTY, WAITING)) { while (System.nanoTime() < timeBound){ herItem = slot.get(stampHolder); if (stampHolder[0] == BUSY) { slot.set(null, EMPTY); return herItem; }} if (slot.CAS(myItem, null, WAITING, EMPTY)){ throw new TimeoutException(); } else { herItem = slot.get(stampHolder); slot.set(null, EMPTY); return herItem; } } break; Exchanger State EMPTY Try to insert myItem and change state to WAITING
178
Art of Multiprocessor Programming178 case EMPTY: // slot is free if (slot.CAS(herItem, myItem, EMPTY, WAITING)) { while (System.nanoTime() < timeBound){ herItem = slot.get(stampHolder); if (stampHolder[0] == BUSY) { slot.set(null, EMPTY); return herItem; }} if (slot.CAS(myItem, null, WAITING, EMPTY)){ throw new TimeoutException(); } else { herItem = slot.get(stampHolder); slot.set(null, EMPTY); return herItem; } } break; Exchanger State EMPTY Spin until either myItem is taken or timeout Spin until either myItem is taken or timeout
179
Art of Multiprocessor Programming179 case EMPTY: // slot is free if (slot.CAS(herItem, myItem, EMPTY, WAITING)) { while (System.nanoTime() < timeBound){ herItem = slot.get(stampHolder); if (stampHolder[0] == BUSY) { slot.set(null, EMPTY); return herItem; }} if (slot.CAS(myItem, null, WAITING, EMPTY)){ throw new TimeoutException(); } else { herItem = slot.get(stampHolder); slot.set(null, EMPTY); return herItem; } } break; Exchanger State EMPTY myItem was taken, so return herItem that was put in its place myItem was taken, so return herItem that was put in its place
180
Art of Multiprocessor Programming180 case EMPTY: // slot is free if (slot.CAS(herItem, myItem, EMPTY, WAITING)) { while (System.nanoTime() < timeBound){ herItem = slot.get(stampHolder); if (stampHolder[0] == BUSY) { slot.set(null, EMPTY); return herItem; }} if (slot.CAS(myItem, null, WAITING, EMPTY)){ throw new TimeoutException(); } else { herItem = slot.get(stampHolder); slot.set(null, EMPTY); return herItem; } } break; Exchanger State EMPTY Otherwise we ran out of time, try to reset status to EMPTY and time out
181
Art of Multiprocessor Programming181Art of Multiprocessor Programming© Herlihy-Shavit 2007 181 case EMPTY: // slot is free if (slot.compareAndSet(herItem, myItem, WAITING, BUSY)) { while (System.nanoTime() < timeBound){ herItem = slot.get(stampHolder); if (stampHolder[0] == BUSY) { slot.set(null, EMPTY); return herItem; }} if (slot.compareAndSet(myItem, null, WAITING, EMPTY)){throw new TimeoutException(); } else { herItem = slot.get(stampHolder); slot.set(null, EMPTY); return herItem; } } break; Exchanger State EMPTY If reset failed, someone showed up after all, so take that item If reset failed, someone showed up after all, so take that item
182
Art of Multiprocessor Programming182 case EMPTY: // slot is free if (slot.CAS(herItem, myItem, EMPTY, WAITING)) { while (System.nanoTime() < timeBound){ herItem = slot.get(stampHolder); if (stampHolder[0] == BUSY) { slot.set(null, EMPTY); return herItem; }} if (slot.CAS(myItem, null, WAITING, EMPTY)){ throw new TimeoutException(); } else { herItem = slot.get(stampHolder); slot.set(null, EMPTY); return herItem; } } break; Exchanger State EMPTY Clear slot and take that item
183
Art of Multiprocessor Programming183 case EMPTY: // slot is free if (slot.CAS(herItem, myItem, EMPTY, WAITING)) { while (System.nanoTime() < timeBound){ herItem = slot.get(stampHolder); if (stampHolder[0] == BUSY) { slot.set(null, EMPTY); return herItem; }} if (slot.CAS(myItem, null, WAITING, EMPTY)){ throw new TimeoutException(); } else { herItem = slot.get(stampHolder); slot.set(null, EMPTY); return herItem; } } break; Exchanger State EMPTY If initial CAS failed, then someone else changed status from EMPTY to WAITING, so retry from start If initial CAS failed, then someone else changed status from EMPTY to WAITING, so retry from start
184
Art of Multiprocessor Programming184 case WAITING: // someone waiting for me if (slot.CAS(herItem, myItem, WAITING, BUSY)) return herItem; break; case BUSY: // others in middle of exchanging break; default: // impossible break; } States WAITING and BUSY
185
Art of Multiprocessor Programming185 case WAITING: // someone waiting for me if (slot.CAS(herItem, myItem, WAITING, BUSY)) return herItem; break; case BUSY: // others in middle of exchanging break; default: // impossible break; } States WAITING and BUSY someone is waiting to exchange, so try to CAS my item in and change state to BUSY someone is waiting to exchange, so try to CAS my item in and change state to BUSY
186
Art of Multiprocessor Programming186 case WAITING: // someone waiting for me if (slot.CAS(herItem, myItem, WAITING, BUSY)) return herItem; break; case BUSY: // others in middle of exchanging break; default: // impossible break; } States WAITING and BUSY If successful, return others item, otherwise someone else took it, so try again from start If successful, return others item, otherwise someone else took it, so try again from start
187
Art of Multiprocessor Programming187 case WAITING: // someone waiting for me if (slot.CAS(herItem, myItem, WAITING, BUSY)) return herItem; break; case BUSY: // others in middle of exchanging break; default: // impossible break; } States WAITING and BUSY If BUSY, other threads exchanging, so start again If BUSY, other threads exchanging, so start again
188
Art of Multiprocessor Programming188 The Exchanger Slot Exchanger is lock-free Because the only way an exchange can fail is if others repeatedly succeeded or no-one showed up The slot we need does not require symmetric exchange
189
Art of Multiprocessor Programming189 public class EliminationArray { … public T visit(T value, int range) throws TimeoutException { int slot = random.nextInt(range); int nanodur = convertToNanos(duration, timeUnit)); return (exchanger[slot].exchange(value, nanodur) }} Back to the Stack: the Elimination Array
190
Art of Multiprocessor Programming190 public class EliminationArray { … public T visit(T value, int range) throws TimeoutException { int slot = random.nextInt(range); int nanodur = convertToNanos(duration, timeUnit)); return (exchanger[slot].exchange(value, nanodur) }} Elimination Array visit the elimination array with fixed value and range visit the elimination array with fixed value and range
191
Art of Multiprocessor Programming191 public class EliminationArray { … public T visit(T value, int range) throws TimeoutException { int slot = random.nextInt(range); int nanodur = convertToNanos(duration, timeUnit)); return (exchanger[slot].exchange(value, nanodur) }} Elimination Array Pick a random array entry
192
Art of Multiprocessor Programming192 public class EliminationArray { … public T visit(T value, int range) throws TimeoutException { int slot = random.nextInt(range); int nanodur = convertToNanos(duration, timeUnit)); return (exchanger[slot].exchange(value, nanodur) }} Elimination Array Exchange value or time out
193
Art of Multiprocessor Programming193 public void push(T value) {... while (true) { if (tryPush(node)) { return; } else try { T otherValue = eliminationArray.visit(value,policy.range); if (otherValue == null) { return; } Elimination Stack Push
194
Art of Multiprocessor Programming194 public void push(T value) {... while (true) { if (tryPush(node)) { return; } else try { T otherValue = eliminationArray.visit(value,policy.range); if (otherValue == null) { return; } Elimination Stack Push First, try to push
195
Art of Multiprocessor Programming195 public void push(T value) {... while (true) { if (tryPush(node)) { return; } else try { T otherValue = eliminationArray.visit(value,policy.range); if (otherValue == null) { return; } Elimination Stack Push If I failed, backoff & try to eliminate
196
Art of Multiprocessor Programming196 public void push(T value) {... while (true) { if (tryPush(node)) { return; } else try { T otherValue = eliminationArray.visit(value,policy.range); if (otherValue == null) { return; } Elimination Stack Push Value pushed and range to try
197
Art of Multiprocessor Programming197 public void push(T value) {... while (true) { if (tryPush(node)) { return; } else try { T otherValue = eliminationArray.visit(value,policy.range); if (otherValue == null) { return; } Elimination Stack Push Only pop() leaves null, so elimination was successful Only pop() leaves null, so elimination was successful
198
Art of Multiprocessor Programming198 public void push(T value) {... while (true) { if (tryPush(node)) { return; } else try { T otherValue = eliminationArray.visit(value,policy.range); if (otherValue == null) { return; } Elimination Stack Push Otherwise, retry push() on lock-free stack
199
Art of Multiprocessor Programming199 public T pop() {... while (true) { if (tryPop()) { return returnNode.value; } else try { T otherValue = eliminationArray.visit(null,policy.range; if (otherValue != null) { return otherValue; } }} Elimination Stack Pop
200
Art of Multiprocessor Programming200 public T pop() {... while (true) { if (tryPop()) { return returnNode.value; } else try { T otherValue = eliminationArray.visit(null,policy.range; if ( otherValue != null) { return otherValue; } }} Elimination Stack Pop If value not null, other thread is a push(), so elimination succeeded If value not null, other thread is a push(), so elimination succeeded
201
Art of Multiprocessor Programming201 Summary We saw both lock-based and lock-free implementations of queues and stacks Dont be quick to declare a data structure inherently sequential –Linearizable stack is not inherently sequential (though it is in worst case) ABA is a real problem, pay attention
202
Art of Multiprocessor Programming202 This work is licensed under a Creative Commons Attribution- ShareAlike 2.5 License.Creative Commons Attribution- ShareAlike 2.5 License You are free: –to Share to copy, distribute and transmit the work –to Remix to adapt the work Under the following conditions: –Attribution. You must attribute the work to The Art of Multiprocessor Programming (but not in any way that suggests that the authors endorse you or your use of the work). –Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under the same, similar or a compatible license. For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to –http://creativecommons.org/licenses/by-sa/3.0/. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author's moral rights.
203
Art of Multiprocessor Programming203
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.