Download presentation
1
Sisyphus cooling and pumping of linear oscillator by superconducting qubit
M. Grajcar Comenius University, Slovakia A. Izmalkov, S.H.W. van der Ploeg, Th. Wagner, E. I’lichev, H.-G. Meyer Institute for Physical High Technology, Germany A. Fedorov, A. Shnirman, Gerd Schön, Institut für Theoretische Festkörperphysik Universität Karlsruhe, Germany S.N. Shevchenko, A.N. Omelyanchouk, B.Verkin Institute for Low Temperature Physics and Engineering, Kharkov, Ukraine S. Ashhab, J.R. Johansson, A. Zagoskin and Franco Nori, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Japan
2
Outline Superconducting flux qubit
Adiabatic measurement of the qubit in the ground state Spectroscopic measurement Sisyphus cooling and pumping Lower limit on the achievable temperature
3
Single-junction interferometer (RF-SQUID)
1 Or in normalized Units: Classical two level System!
4
Classical picture 1 p 2p f Particle with mass ~ CJ in potential:
5
Quantum Picture d p 2p f If CJ is small enough tunneling between both wells becomes possible and therefore the degeneracy is lifted. So we need Small Josephson Junctions with EJ/EC~10-100
6
Persistent current (flux) qubit – analogue of ammonia molecule
nF B Superconducting persistent current qubit – oscillation of a magnetic dipole moment (magnetic flux), Ammonia molecule – oscillation of an electric dipole moment (f=24 GHz) N H + + H + H
7
Size problem and solution
For quantum behavior EJ/EC~10-100 Typical parameters for aluminum technology :
8
Solution of the size problem
‚Size‘ problem solved in 70´s T. Yamashita et al., J. Appl. Phys. 50, 3547 (1979) This idea was dusted off by J.E. Mooij et al., Science 285, 1036, 1999
9
Hamiltonian. Energy surface.
10
Tunneling amplitude GHz -0 0 E0
ЕС=5 GHz, g=EJ/EC=66, ЕJ=330 GHz. 0.85 0.86 0.87 0.88 0.89 0.9 0.901 0.902 0.905 0.91 0.92 GHz 20 13 8.45 5.44 3.49 2.24 2.14 2.05 1.79 1.43
11
Pseudospin Hamiltonian
IC, f2 IC, f1 aIC (0.5<a<1) Fx 1 um
12
Flux qubit coupled to oscillator
VT LT L CT Ib M
13
Adiabatic measurement away from degeneracy point
14
Adiabatic measurement at degeneracy point
15
Lagrangian of the qubit-resonator system
Expanding into Taylor series up to the second order term 2
16
Φi Quantum approach C L L I is satisfied. At the degeneracy point b
No perturbation of the measured observable [V.B. Braginsky and F.Ya. Khalili, Quantum Measurement, (Cambridge University Press, Cambridge, 1992]. The sufficient condiction for Quantum Nondemolition Measurements is satisfied.
17
Impedance Measurement, classical resonator
LT L CT Φ VT Ib Build a resonator, connect something to it with a susceptibility different from zero and it will change its resonant frequency. Ya. S. Greenberg et al., PRB 66, (2002) DC-Squid Josephson Inductance: A. Lupascu et al., PRL 93, (2004).
18
Response of resonator GHz EJ/Ec<102 =0.9 EJ/Ec103
=0.8 0.86 0.88 0.9 0.901 0.902 0.905 0.91 0.92 GHz 13 5.44 2.24 2.14 2.05 1.79 1.43
19
Resonant frequency of the resonator
Y. Greenberg et al., PRB 66 (2002). Fitting parameters
20
Sisyphus work Greek mythology
As a punishment from the gods for his trickery, Sisyphus was compelled to roll a huge rock up a steep hill, but before he reached the top of the hill, the rock always escaped him and he had to begin again. Titian (1549) artist vision of Sisyphus work Physical realization: For atoms D. J. Wineland, J. Dalibard and C. Cohen-Tannouji, J. Opt. Soc. B9, 3242 (1992). For qubit Grajcar et al., arXiv: Nature Physics 4, (2008).
21
Sisyphus cooling
22
Sisyphus pumping
23
Adiabatic vs. spectroscopic measurement
Solid line is theoretical curve for Parameters determined from adiabatic measurement
24
Strong microwave driving at fmw=4.5 GHz
Strong driving Transition from weak to strong driving Weak driving dc (0) A. Izmalkov et al., PRL 101, (2008) W.D. Oliver et al.,SCIENCE 310, 1653(2005) M. Sillanpää et al., PRL 96, (2006)
25
Landau-Zener interferometry
A.V. Shytov, D.A. Ivanov, and M.V. Feigel’man, Eur. Phys. J. B 36, 263 (2003). S.N. Shevchenko et al. Phys. Rev. B 78, (2008)
26
More rigorous treatment of Sisyphus cooling/pumping
A. Fedorov, A. Shnirman, Gerd Schön fmw=14 GHz M. Grajcar et al., Nature Physics 4, (2008).
27
Spectral density of the voltage noise of the tank
fmw=8 GHz
28
Tank circuit coupled to mechanical oscillator
29
Sisyphus and sideband cooling limit
M. Grajcar, A. Ashhab, J.R. Johansson, F. Nori Phys. Rev. B 78, (2008)
30
Conclusions Superconducting flux qubits are well described by two-level (pseudospin) Hamiltonian Experimental data obtained from adiabatic and spectroscopic measurement are consistent and fully agree with the quantum-mechanical predictions to the experimental accuracy. The qubit can be used as an artificial atom for Sisyphus cooling of a low frequency oscillator (electrical, nanomechanical, etc.)
31
Ground state energy modulation
- + - + m= -1/2 m= 1/2
32
Sisyphus cooling
33
Design for spectroscopic measurement
34
Spectroscopy of the system of two coupled flux qubits.
A. Izmalkov et al., PRL 101, (2008) Without microwave driving fmw= 14 GHz fmw= 18 GHz fmw= 21 GHz
35
Nanomechanical oscillators
Nanobridge from IPHT Jena Neik et al., Nature 443, (2006) I. Martin, A. Shnirman, Lin Tian, P. Zoller Ground state cooling of mechanical resonators Phys. Rev. B 69, (2004) Prepared for measurement at temprature below1 mK in ulra low temp. lab in Košice
36
Quantum metamaterials
Design of high efficiency microwave photon detector for GHz range G. Romero et al., Microwave Photon Detector in Circuit QED, arXiv: v1
37
Four qubit sample q3 q1 q4 q2 Layout Micrograph A3 Iq3 Iq1 A2 Ib4 Iq2
38
Anti-Ferromagnetic and Ferromagnetic Coupling
AFM FM Iq2=-10 µA Iq3=0 Iq4=-250 µA
39
Theoretical fits. Phys. Rev. Lett. 96, 047006 (2006)
Experiment Theory
40
Psedo-spin Hamiltonian
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.