Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 December 2010, Vientiane Mekong Development Pressures and an Integrated Research Approach Aura Salmivaara, Juha Sarkkula, Jorma Koponen Aalto University,

Similar presentations


Presentation on theme: "1 December 2010, Vientiane Mekong Development Pressures and an Integrated Research Approach Aura Salmivaara, Juha Sarkkula, Jorma Koponen Aalto University,"— Presentation transcript:

1 1 December 2010, Vientiane Mekong Development Pressures and an Integrated Research Approach Aura Salmivaara, Juha Sarkkula, Jorma Koponen Aalto University, SYKE, EIA Ltd

2 WUP-FIN

3 MRC WUP-FIN and DMS MRC = Mekong River Commission WUP = MRC Water Utilisation Programme WUP-FIN = Complementary component of the WUP focusing on integrated modelling DMS = MRC Detailed Modelling Support Programme, follow-up of the WUP-FIN

4 Project history 2001 – 2003 Tonle Sap monitoring, socio- economics and modelling; development of basic methodology and primary data acquisition 2004 – 2007 expansion of the methodology to the four Lower Mekong Basin countries 2009 – 2010 cross-cutting themes and integrated modelling: IWRM, sediments, productivity, socio-economics

5 Implementing Institutes Public sector: Finnish Environment Institute Private sector: EIA Ltd. Academic sector: Technical University of Helsinki (now Aalto University) Client: Mekong River Com- mission, National institutes

6 Financing Part of the Finnish Government support for the MRC Supported programmes: WUP-FIN, IKMP (Information and Knowledge Management Programme), SHI (Sustainable Hydropower Initiative) and riparian capacity building

7 Related projects

8 MRC SIMVA to be developed into regular monitoring M-POWER: water resources governance, strong riparian participation Post-Graduate riparian capacity building programme for Mekong, Unesco Delft IHE (International Hydrological Education) Stefan Uhlenbrook, Wim Duiven MRC Sustainable Hydropower Initiative, Climate Change Project

9 Related projects, continued Mekong Futures, AUSAID: impacts, integrated approach, alternative development Challenge Food and Water Mekong: multi- purpose use of dams Different capacity building programmes, for instance MRC and Lao PDR IWRM The role of the riparian institutions is more and more emphasized, for instance Hydro- Agro-Economic Modelling for the Climate Change Adaptation in the Lao PDR

10 ”Technical” projects, examples Delta O Mon power plant climate change impacts Xayaburi EIA (sediments, primary productivity, fisheries, carbon emissions, water quality, erosion, downstream impacts etc.) Tonle Sap built structures impacts on fish Tonle Sap navigational channel dredging feasibility

11 Mekong pressures

12 Mekong under pressure Accelerated development: plans for 60 - 140 tributary and 11 mainstream dams; expansion of irrigation by 2 million hectares Vulnerable communities Vulnerable environment Dangers for long-term sustainabe natural resources utilisation and food security Climate change poses huge threats

13 Scope of economic impacts Cost of hydropower development can reach annually 10 billion USD only for fisheries Cost of eroding Delta could easily be hundreds if not thousands of billions USD For poor people access to natural resources means life and death although the monetary value can be small Climate change could cause fundamental changes in the region’s economic situation

14 INTEGRATED MODELLING

15 Modelling system

16 DSF compared to the IWRM

17 3D MODEL

18 Floodplain 2D/3D flow including channels and dykes

19 2D flood arrival time

20 2D/3D floodplain sedimentation

21 Bank erosion

22 Water quality Fish cage placement

23 Nutrient cycles, algal blooms etc.

24 Acidity flushing and transport

25 Fish larvae drift

26 IWRM MODEL

27 Basin-wide IWRM DEM SoilLanduse

28 Grids: 5 km and 2 km

29 Hydropower editor

30 Calibration

31 Snow melt

32 FISHERIES MODELLING

33 Fish production components

34 Lake production

35 Dai fishery catch correlation

36 SOCIO-ECONOMICS

37 Delta WUP-FIN results Water development in the delta has brought many benefits, but also new kind of challenges. The challenges are related particularly to increased water demand, problems with water quality, loss of aquatic resources and increased social differentiation. To deal with these challenges, the Delta’s water management would require a shift from centrally-planned structures towards multilevel management.

38 SIMVA -Social Impact Monitoring and Vulnerability Assessment SIMVA, carried out by MRC/EP (Mr. Lilao) and the national research teams, studies people's vulnerability to change in river-sustained resources, following the sequence of four key questions: – how many people live within the reach of the Mekong River resources? – what proportion of this population makes use of the resources? – to what extent do the users depend on the resources, as opposed to other livelihood strategies? – how resilient to change are resource users likely to be, given the socio-economic and environmental contexts they live in? Quantitative pilot survey of 1360 households carried out in LMB in 2008-2009

39 Modelling and SIMVA Integrated modelling provides broad set of physical and environmental indicators from hydrology to fish The indicators need to be valuated and linked to social factors Pilot work for coupling the modelled indicators to the SIMVA results ongoing

40 Fish production and fishing lots

41 IMPACT ASSESSMENT

42

43

44

45

46 Natural versus hydropower impacted flow

47 Dam sediment impacts

48 Sedimentation (nutrient) change baseline20 year dams

49 Primary production decrease periphyton decreasephytoplankton decrease

50 Fisheries baseline and losses, biomass Million tonnes/ annum

51 Fisheries baseline and losses, value Billion USD/ annum

52 Decrease of fish production in Tonle Sap

53 Conclusions Socio-economic consequences of coastal erosion and Delta morphological changes are potentially extremely large. Estimated fisheries losses due to hydropower development range from $2.5 to $7.6 billion US dollars annually depending on the development option and system sensitivity to nutrient losses. Current value of lost phosphorus is $87 - $150 million USD annually, but the price will probably go up sharply in the future. The estimated value of hydropower reservoir fish production is $120 million US dollars; the actual numbers may differ depending on the conditions of the reservoirs Mitigation measures such as rice fish, aquaculture and increased irrigation have some potential, but are in practice often limited by economic, environmental and technical realities.

54 Conclusions, continued Large differences exist between different economic evaluations of the net hydropower benefits; these should be clarified. Monetary values don't capture the full importance of fisheries; often the most poor and vulnerable part of the population is directly dependent on natural resources; it would be major task trying to find alternative source of income and animal protein for instance for the 1.2 million people living on the lake and floodplains of the Tonle Sap.

55 Data gaps

56 Coastal erosion Reservoir water quality and productivity Dam sediment trapping River, floodplain and coastal fisheries Combined land use, climate change, flood protection and hydropower development impacts Socio-economic impacts, costs and benefits

57 Data gaps, continued Sediment sources and fate Nutrient cycles Groundwater Hourly and daily flow fluctuations due to hydropower Modelling of complex areas (Delta) River bank erosion

58 Data gaps, continued As a whole, by far the largest impacts and data gaps exist in the Delta Sedimentation, salt intrusion, nutrient cycles, water quality, primary productivity, fisheries, regulation etc. require further verification Comprehensive, integrated, state-of-the-art model needs to be established for the Delta Filling of the data gaps is a major effort, requires international and riparian cooperation

59 Towards Sustainable Mekong Development: Cluster of Knowledge Based Mekong Projects

60 Project approach The cluster will provide comprehensive, neutral and scientific knowledge for awareness raising, dialogue, planning, decision making and adaptation. The approach is participatory and interactive guaranteeing effective stakeholder engagement and ownership by the Mekong countries. Project will focus on creation of solid knowledge and capacity building. The countries' participation and ownership is required

61 General tasks Collection of existing information and knowledge under dynamic, interactive and exploratory Information Technology (IT) based tools Filling in knowledge gaps through primary research and field work Coordination and information exchange between existing research initiatives (WISDOM, DRAGON, CHALLENGE, M-POWER, MEKONG FUTURES, MRC, WWF, IUCN, IWMI etc.) Forming stakeholder and expert forums for contributing to the accumulated knowledge and for facilitating dialogue Provision of structured information, analysis and decision support tools for all stakeholder levels Communicating results to all stakeholder levels Capacity building through on-the-job training and participation on all project activities.

62 Cluster projects 1.MEKONG GROUNDWATER INITIATIVE 2.MEKONG SEDIMENTS AND SEDIMENT MANAGEMENT 3.SOURCE AND FATE OF MEKONG NUTRIENTS 4.MEKONG FISHERIES AND FISH PRODUCTION 5.AGRICULTURE DEVELOPMENT AND ALTERNATIVES FOR THE MEKONG REGION

63 Cluster projects, continued 6.CLIMATE CHANGE AND FUTURE MEKONG DEVELOPMENT ALTERNATIVES 7.INTEGRATED MANAGEMENT OF THE MEKONG DELTA

64 Key issues Geomorphology - coastal erosion, geology, deep pools, riverbed, bank erosion Climate change – changes to snow melt, glacier contribution, sea level, water resources, watershed erosion Flow effects - stream water / flooding, precipitation, groundwater, surface (floodplain) flow, drought, water balance Sediments- bed load, suspended load, erosion / deposition balance, effects on navigation Carbon - organic, FPOC, DOC, DIC, carbonate systems,CH4, carbon (natural) balance within basin Nutrients - Nitrogen, Phosphorous, Potassium, plus any other found to be significant. Assess nutrient balance, primary production and links to Fisheries and Agriculture production

65 Key issues, continued Water quality - biota, balance Fisheries - migration, non-migration, spawning, catch, balance, effects of nutrients, flood pulse effects Agriculture - main crops, production, balance, effects of nutrients, hydrological constraints Impacts of human interventions - hydropower dams, flood protection structures, channel construction, flow regulation, bank protection structures, sand mining, river channel filling, dredging, rock blasting, irrigation, groundwater use, dikes, fertilizer, pesticides, wastewater, power plants (oil, coal, gas, nuclear, hp, solar, others), forest clearance / mono crops, reforestation, planting/cutting of mangrove, aquaculture, mining and energy balance (renewable versus non renewable)

66 Key issues, continued Science-policy communication Extension of the SIMVA activities (Social Impact Monitoring and Vulnerability Assessment) Introduction of Subjective Wellbeing Indicators


Download ppt "1 December 2010, Vientiane Mekong Development Pressures and an Integrated Research Approach Aura Salmivaara, Juha Sarkkula, Jorma Koponen Aalto University,"

Similar presentations


Ads by Google