Presentation is loading. Please wait.

Presentation is loading. Please wait.

Maximum and Minimum Values

Similar presentations


Presentation on theme: "Maximum and Minimum Values"β€” Presentation transcript:

1 Maximum and Minimum Values

2 Maximum and Minimum Values
Problem: Find extrema (maximum or minimum) of 𝑓(π‘₯,𝑦) on some domain D. Consider a function 𝑧=𝑓 π‘₯,𝑦 . We say that (π‘Ž,𝑏)is a Local maximum if 𝑓(π‘Ž,𝑏)β‰₯𝑓(π‘₯,𝑦) for (π‘₯,𝑦) in D β€œaround” (π‘Ž,𝑏) Absolute maximum if 𝑓(π‘Ž,𝑏)β‰₯𝑓(π‘₯,𝑦) for all (π‘₯,𝑦) in D Local minimum if 𝑓(π‘Ž,𝑏)≀𝑓(π‘₯,𝑦) for (π‘₯,𝑦) in D β€œaround” (π‘Ž,𝑏) Absolute minimum if 𝑓(π‘Ž,𝑏)≀𝑓(π‘₯,𝑦) for all (π‘₯,𝑦) in D

3 Maximum and Minimum Values
Theorem: If 𝑓 π‘₯,𝑦 has a local maximum or minimum at a point π‘Ž,𝑏 , and the first-order partial derivatives of 𝑓 exist there, then 𝑓 π‘₯ π‘Ž,𝑏 =0 and 𝑓 𝑦 π‘Ž,𝑏 =0. Geometrically: If the function f has a local maximum (or minimum) at 𝑃(π‘Ž,𝑏), then the tangent plane must be horizontal with equation 𝑧=𝑓(π‘Ž,𝑏). Since the equation of the tangent plane is 𝑧=𝑓 π‘Ž,𝑏 + 𝑓 π‘₯ π‘Ž,𝑏 π‘₯βˆ’π‘Ž + 𝑓 𝑦 (π‘Ž,𝑏)(π‘¦βˆ’π‘) it follows that 𝑓 π‘₯ π‘Ž,𝑏 = 𝑓 𝑦 π‘Ž,𝑏 =0

4 Maximum and Minimum Values
NOTES: is a necessary but not sufficient condition for a maximum or a minimum. We could have a saddle point at (a,b) or or both may not exist at a local maximum or minimum. A maximum or minimum could be on the boundary of the domain D.

5 Maximum and Minimum Values
Let π‘Ž,𝑏 be a point in the interior of the domain D. We say (π‘Ž,𝑏) is a critical point for 𝑓(π‘₯,𝑦) if either 𝑓 π‘₯ π‘Ž,𝑏 =0 and 𝑓 𝑦 π‘Ž,𝑏 =0 , or 𝑓 π‘₯ or 𝑓 𝑦 or both do NOT exist at (π‘Ž,𝑏) Critical points are candidates for maximum and minimum. Example 1: Find the critical points of 𝑓 π‘₯,𝑦 = π‘₯ 2 + 𝑦 2 βˆ’6π‘₯βˆ’4𝑦+2 𝑓 π‘₯ π‘₯,𝑦 =2π‘₯βˆ’ 𝑓 𝑦 π‘₯,𝑦 =2π‘¦βˆ’4 The partial derivatives are equal to 0, when π‘₯=3 and 𝑦=2, so the only critical point is 3,2 . From the figure we can see that 𝑓 3,2 =βˆ’11 is a minimum. The surface is the elliptic paraboloid with vertex at 3, 2, βˆ’11 .

6 Maximum and Minimum Values
How do we determine analytically whether a critical point is a maximum, a minimum or neither? Second Derivative Test: We define the Discriminant: Assume the second partial derivatives of 𝑓 are continuous β€œaround” (π‘Ž,𝑏) and 𝑓 π‘₯ π‘Ž,𝑏 = 𝑓 𝑦 π‘Ž,𝑏 =0 𝑫(𝒂,𝒃) 𝒇 𝒙𝒙 (𝒂,𝒃) Classification of (𝒂,𝒃) + Local Minimum βˆ’ Local Maximum Saddle point Test is inconclusive

7 Maximum and Minimum Values – Example 2
Find and classify the critical points of 𝑓 π‘₯,𝑦 =4+ π‘₯ 3 + 𝑦 3 βˆ’3π‘₯𝑦 Contour plot 𝑓 π‘₯ =3 π‘₯ 2 βˆ’3𝑦 𝑓 𝑦 =3 𝑦 2 βˆ’3π‘₯ Setting the partial derivatives equal to 0, yields π‘₯ 2 βˆ’π‘¦=0 and 𝑦 2 βˆ’π‘₯=0 Substitute 𝑦= π‘₯ 2 from the first equation into the second equation. This gives 0= π‘₯ 4 βˆ’π‘₯=π‘₯( π‘₯ 3 βˆ’1) with roots π‘₯=0 and π‘₯=1. The two critical points are (0,0) and (1,1) Critical point 𝒇 𝒙𝒙 𝒇 π’šπ’š 𝒇 π’™π’š Discriminant 𝑫= 𝒇 𝒙𝒙 𝒇 π’šπ’š βˆ’ 𝒇 π’™π’š 𝟐 Type (0,0) βˆ’3 0 0 βˆ’ βˆ’3 2 =βˆ’9 Saddle since 𝐷<0 (1,1) 6 6 6 βˆ’ βˆ’3 2 =27 Local minimum since 𝐷>0 and 𝑓 π‘₯π‘₯ >0

8 Maximum and Minimum Values - Application
Find the point (x, y, z) on the plane z = 4x + 3y + 3 which is closest to the origin. We will minimize the square of the distance from the point (x, y, z) to the origin, 𝑑 2 = π‘₯ 2 + 𝑦 2 + 𝑧 2 , subject to the constraint z = 4x + 3y + 3 Substituting z into 𝑑 2 yields 𝑓 π‘₯,𝑦 = π‘₯ 2 + 𝑦 2 + (4π‘₯+3𝑦+3) 2 Find the critical points: 𝑓 π‘₯ =2π‘₯+8 4π‘₯+3𝑦+3 =34π‘₯+24𝑦+24=0 𝑓 𝑦 =2𝑦+6 4π‘₯+3𝑦+3 =24π‘₯+20𝑦+18=0 Solving the system gives Substituting into the equation of the plane gives The point on the plane closest to the origin is

9 Maximum and Minimum Values
ABSOLUTE MAXIMUM AND MINIMUM VALUES EXTREME VALUE THEOREM: If 𝑓 is continuous on a closed, bounded region D in R2, then f attains an absolute maximum 𝑓( π‘₯ 1 , 𝑦 1 ) and an absolute minimum 𝑓( π‘₯ 2 , 𝑦 2 ) at some points ( π‘₯ 1 , 𝑦 1 ) and ( π‘₯ 2 , 𝑦 2 ) in D. To find absolute maximum and minimum: Step 1. Find the values of f at the critical points Step 2. Find the extreme value of f on the boundary of D Step 3. The largest value in 1. and 2. is the absolute maximum, the smallest value is the absolute minimum.

10 Maximum and Minimum Values - Example 3
Find the absolute maximum and minimum of the function 𝑓 π‘₯,𝑦 =π‘₯π‘¦βˆ’5π‘¦βˆ’25π‘₯+125 on the region D bounded by y = x2 and y = 36. Step1: Find the critical points: 𝑓 π‘₯ =π‘¦βˆ’25=0, 𝑓 𝑦 =π‘₯βˆ’5= (5,25) Evaluate the function: f(5, 25) = 0 Step 2: Find the extreme values of 𝑓on the boundary of D The boundary consists of the line segment 𝑦=36 and the parabola. We first check the line segment. Substituting y = 36 into the expression for 𝑓(π‘₯,𝑦) gives: 𝑓 π‘₯,36 =36π‘₯βˆ’5 36 βˆ’25π‘₯+125=11π‘₯βˆ’ βˆ’6≀π‘₯≀6 This is an increasing function of x, so its minimum value is 𝑓 βˆ’6,36 =βˆ’121 and its maximum value is 𝑓 6,36 =11.

11 Maximum and Minimum Values - Example 3 continued
Now let’s check the boundary 𝑦= π‘₯ 2 . Substituting 𝑦= π‘₯ 2 into the expression for 𝑓(π‘₯,𝑦), gives 𝑓 π‘₯, π‘₯ 2 =𝑔 π‘₯ = π‘₯ 3 βˆ’5 π‘₯ 2 βˆ’25π‘₯ βˆ’6≀π‘₯≀6 We can see from the graph of 𝑔 π‘₯ =𝑓(π‘₯ ,π‘₯ 2 ) that the function attains its minimum at π‘₯=βˆ’6. To find the maximum we solve 𝑔 β€² π‘₯ =3 π‘₯ 2 βˆ’10π‘₯βˆ’25=0. The roots are π‘₯=βˆ’ 5 3 and π‘₯=5. Values of 𝑓: Step 3: Compare all the values from Step 1 and 2. 𝑓 5,25 =0 𝑓 βˆ’6,36 =βˆ’ Absolute minimum 𝑓 βˆ’6,36 =βˆ’121 𝑓 6,36 =11 𝑓 βˆ’ 5 3 , β‰ˆ Absolute maximum 𝑓 βˆ’ 5 3 , β‰ˆ148.15


Download ppt "Maximum and Minimum Values"

Similar presentations


Ads by Google