Download presentation
Published byAllan Wilson Modified over 9 years ago
1
CHAPTER 6 MODULAR SQUENTIAL CIRCUITS & APPLICATIONS
6-1 Counter 6-2 Register 6-3 Sequence generator 6-4 Digital Clock Summary
2
6-1 Counter 1.Categories of counter
Aiming at count the number of pulse inputted 1.Categories of counter Clocking way, asynchronous and synchronous Number of states, modulo-2,10 or arbitrary. Type of Sequence, up, down and bi-direction. Scale, SSI and MSI
3
2.MSI Counter (1)4-Bit Synchronous Binary Counter
(2) 4-Bit Binary Up/Down Counter (3)MSI Asynchronous Counter
4
(1) 4-Bit Synchronous Binary Counter
1. 4-Bit Synchronous Binary Counter CT74161 2. 4-Bit Synchronous Binary Counter CT74163 3. CT74161/ CT74163 Function Extension
5
(1) Logic Symbol 1. 4-Bit Synchronous Binary Counter CT74161
It consist of 4 master-slave J-K flip-flops. D A: highlow CP: clock pulse,Leading Edge Triggered. R: Asynchronous Clear, Active-Low. LD: Synchronous Preset, Active-Low QD QA: highlow P、T:Enable
6
CT74161 Function Table Input Output
CP R LD P(S1) T(S2) A B C D QA QB QC QD Ф 0 Ф Ф Ф ФФФФ ↑ 1 0 Ф Ф A B C D A B C D Ф Ф ФФФФ keep unchanged Ф 1 1 Ф 0 ФФФФ keep unchanged ↑ ФФФФ count
7
(2) Function 1. 4-Bit Synchronous Binary Counter CT74161
1)Asynchronous Clear: if R=0,output will be “0000”, having nothing to do with CP. 2) Synchronous Preset: if R=1 and LD=0,output reflect the data inputs in response to a leading edge of CP. 3)keep: if R=LD=1,all flip-flops will keep unchanged. 4)count: if LD = R = P= T = 1,count in binary system. If the first state is 0000,after 15 CP,the output is “1111”,the ripple clock output (RCO) QCC = TQAQBQCQD =1。After 16th CP, the output return 0000 and QCC = 0.
8
2. 4-Bit Synchronous Binary Counter CT74163
CT74161 Function Table CT74163 Function Table Input Output CP R LD P(S1) T(S2) A B C D QA QB QC QD Ф 0 Ф Ф Ф ФФФФ ↑ Ф Ф A B C D A B C D Ф Ф ФФФФ keep unchanged Ф 1 1 Ф ФФФФ keep unchanged ↑ ФФФФ Count ↑
9
Characteristics: 2. 4-Bit Synchronous Binary Counter CT74163
(1) Pin arrangement is same as CT74161. (2) The functions of Preset, Count and Remain are same as CT74161. (3)The Clear is different from CT74161. There is an active-LOW clear input, which synchronously reset all four outputs in a positive transition on the CP input.
10
Comparison of 4-Bit Synchronous Binary Counters
CT74161 CT74163 Asynchronous Clear Synchronous Preset Remain Count Synchronous Clear Synchronous Preset Remain Count
11
(1) Synchronous Preset (2) Feedback Clear (3) Multi-Preset
3. CT74161/ CT74163 Function Extension connected to achieve arbitrary modulo counter (1) Synchronous Preset (2) Feedback Clear (3) Multi-Preset
12
Example 1: design a modulo-10 counter
(1) Synchronous Preset Example 1: design a modulo-10 counter Solution 1: with counting sequence 6,7,…,15 Binary State Sequence count output N QD QC QB QA 1 1 QCC=1
13
(1) Synchronous Preset Example 1: design a modulo-10 counter
Binary State Sequence Count Output N QD QC QB QA Solution 2: with counting sequence 0,1,…,9 1 Simulation
14
Example 3: : design a modulo-24 counter using Synchronous Preset
(24)10=(11000)2 2 chips Initial state: Last state: 1 1 1
15
(1) Synchronous Preset (2) Feedback Clear (3) Multi-Preset
3. CT74161/ CT74163功能扩展 connected to achieve arbitrary modulo counter (1) Synchronous Preset (2) Feedback Clear (3) Multi-Preset
16
using CT74161 (2)Feedback Clear Binary State Sequence
N QD QC QB QA Example 1: Function Analysis of The Following Circuits 1
17
(2)Feedback Clear Using CT74161 Binary State Sequence
N QD QC QB QA Example 2: design a modulo-9 counter
18
(2)Feedback Clear Using CT74163 Example 3: design a modulo-13 counter
Binary State Sequence N QD QC QB QA Example 3: design a modulo-13 counter Simulation
19
(1) Synchronous Preset (2) Feedback Clear (3) Multi-Preset
3. CT74161/ CT74163功能扩展 connected to achieve arbitrary modulo counter (1) Synchronous Preset (2) Feedback Clear (3) Multi-Preset
20
(3) Multi-Preset a modulo-10 counter
Example : Function Analysis of The Following Circuits Binary State Sequence N QD QC QB QA 1 1 a modulo-10 counter
21
2. MSI Counter (1) 4-Bit Synchronous Binary Counter
(2) 4-Bit Binary Up/Down Counter (3)MSI Asynchronous Counter
22
(2) 4-Bit Binary Up/Down Counter CT74193
Input Output CPU CPD R LD A B C D QA QB QC QD φ φ 1 φ φ φ φ φ φ φ A B C D A B C D ↑ φ φ φ φ up counting 1 ↑ φ φ φ φ down counting φ φ φ φ remain CT74193 Function Table
23
(2) 4-Bit Binary Up/Down Counter CT74193
D A:HIGHLOW CPU 、CPD :dual clock input R: asynchronous clear, active-HIGH. LD: asynchronous preset, active-LOW. QD QA:HIGHLOW 1. Logic Symbol QCC=0 in last state QCB=0 in the first state
24
(1) achieve M<16 counter
(2) 4-Bit Binary Up/Down Counter CT74193 2. CT74193 Function Extension —— connected to achieve arbitrary modulo counter (1) achieve M<16 counter (2) achieve M>16 counter
25
(1) achieve M<16 counter
Method 1: adopt asynchronous preset and up count. Example: design a modulo-9 counter using CT74193 Binary State Sequence N QD QC QB QA 1 1 QCC=0
26
(1) achieve M<16 counter
Method 2: adopt asynchronous preset and down count. (1) achieve M<16 counter Example: design a modulo-9 counter using CT74193 Binary State Sequence N QDQCQBQA 1 1 QCB=0
27
(1) achieve M<16 counter
(2) 4-Bit Binary Up/Down Counter CT74193 2. CT74193 Function Extension —— connected to achieve arbitrary modulo counter (1) achieve M<16 counter (2) achieve M>16 counter
28
(2) achieve M > 16 counter
Example: design a modulo-147 counter using CT74193 Method 1: adopt asynchronous preset and up count. 1 1 M = (147)10 =( )2 Need 2 chips of CT74193
29
(2) achieve M > 16 counter
Example: design a modulo-147 counter by using CT74193 Method 2: adopt asynchronous preset and down count, take advantage of QCB 1 1 1 1 M = (147)10 =( )2
30
2. MSI Counter (1) 4-Bit Synchronous Binary Counter
(2) 4-Bit Binary Up/Down Counter (3)MSI Asynchronous Counter
31
(3) Asynchronous Counter CT74290
Input Output CP R0(1)R0(2)Sg(1)Sg(2) QA QB QC QD Φ Φ Φ Φ Φ ↓ Φ Φ Count Φ Φ Φ Φ Φ Φ
32
(2) Asynchronous Counter CT74290
(1) Flip-Flop A:M=2 CPA In, QA Out (2) Flip-Flop B, C, D:M=5 Asynchronous Counter. CPB In QD QB Out CPA、CPB: Clock Input R01、R02: Clear Sg1、Sg2 : set 9 QD QA:HighLow 1 . Logic Symbol
33
(3) Asynchronous Counter CT74290
2. Function (1) Set 9:if Sg1= Sg2= 1,output is 1001. If QA is connected with CPB , the counter will become an 8421BCD counter. CPA In QD QA Out (2)Asynchronous Clear: if R01=R02=1,one of Sg1, Sg2 is Low,output is “0000”,without regard to CP. (3)count: if one of R01、R02 and Sg1、Sg2 is Low and CP negative transition appear,the counter will perform. If QD is connected with CPA , the counter will become a 5421BCD counter. CPB In,QAQD QC QB Out.
34
Example 1: design a modulo-6 counter using CT74290 .
Method 1: take advantage of R M=6 Binary State Sequence N QA QB QC QD 0110
35
Example 2: design a modulo-7 counter using CT74290 .
Method 2: take advantage of S M=7 Binary State Sequence N QAQBQC QD 1 1
36
Example 3: design a modulo-10 counter using CT74290 .
Requirement: adopt 5421 code M=10 Binary State Sequence N QAQDQC QB
37
Example 3: design a modulo-88 counter using CT74290 .
Method 3: 2 chips of CT74290 cascaded 1
38
CHAPTER 6 MODULAR SQUENTIAL CIRCUITS & APPLICATIONS
6-1 Counter 6-2 Register 6-3 Sequence generator 6-4 Digital Clock Summary
39
Unidirectional Shift Register
1. Category of Register For storage of data Register Shift Register Unidirectional Shift Register Bi-directional Shift Register
40
1.Logic Symbol 2. Register (1)MSI Register CT74175
It is consist of 4 D-Flip-Flops. 2. Function: Input Output R CP D Q 0 φ φ 1 ↑ 1 1 ↑ 0 1 0 φ Q Q
41
(1)Shift Register Left Shift Register
Assume flip-flop 4 is the lowest register and flip-flop 1 is the highest register. According to the characteristic equation of D flip-flop: When the clock pulse is applied, State of lower flip-flop is shift into the higher as its next state. Left Shift Register
42
? 1 1 1 To load data 1011: Serial Input only One data input line 1
Solution: Four bits is entered into the register one by one when four clock pulses occurs. Left Shift Register: High-first, low-later. Right Shift Register : Low-first, high-later Owe to the circuit is a Left Shift Register, the sequence of data input is 1 1 1
43
To load data 1011,that is D1D2D3D4= 1011
CP Q Q Q Q1 1 1(D1) 2 0(D2) (D1) 3 1(D3) (D2) (D1) 4 1(D4) (D3) (D2) (D1) 1
44
(2)4-bit unidirectional Shift Register CT74195
CT74195 Function Table Input Output …… 3 R CP LD SH D J K Q 1 2 3 φ d 1 2 3 1 ↑ 0 d0 …… d 3 φ 1 φ Q 00 10 20 30 1 ↑ φ 0 1 Q 0n 1n 2n n 2 1 ↑ φ 0 0 0 Q 0n Q 1n 2n n 2 1 ↑ φ 1 1 1 Q 0n Q 1n 2n n 2 1 ↑ φ 1 0 n Q 0n 1n 2n 2
45
(2)4-bit unidirectional Shift Register CT74195
1.Logic Symbol 2. Function CT74195 (1) Clear: if R=0,output is “0000”. (2) Load: if R=1,SH/LD=0, when CP occurs, parallel load. (3) Right Shift:if R=1,SH/LD=1, when CP occurs, right shift. Q0 is by JK, Q0Q1, Q1Q2 ,Q2Q3。
46
(3) 4-bit bi-directional Shift Register CT74194
CT74194 Function Table Input Output R CP D SR …… D3 MB M A SL Q 0 Q 1 Q 2 Q3 0 φ φ φ 0 0 1 0 φ φ remain 1 ↑ φ d …… 3 1 1 1 2 1 Q 1 ↑ 1 φ φ 0 0n 1n 2n 1 ↑ 0 φ φ 1 Q 0n 1n 2n Q 1 ↑ φ φ 1 0 1n 2n 3n 1 1 ↑ φ φ 1 0 Q 1n 2n 3n 1 φ φ φ 0 remain Note:0—Highest bit … —Lowest bit
47
(3) 4-bit bi-directional Shift Register CT74194
1.Logic Symbol 2. Function (1) Clear: if R=0,asynchronous clear. (2)if MA=MB=1,parallel load. (3)if MA=MB=0,remain. (4)if MA=1,MB=0,right shift and data is inputted serially from DSR. (5)if MA=0 ,MB=1,left shift and data is inputted serially from DSL.
48
1. Data Conversion 2. Ring Counter 3. Twisted-Ring Counter
(4)Application of Register 1. Data Conversion 2. Ring Counter 3. Twisted-Ring Counter 4. Frequency-Division
49
1. 7-bit SerialParallel Conversion
ParallelSerial
50
1. Data Conversion 2. Ring Counter 3. Twisted-Ring Counter
(4)Application of Register 1. Data Conversion 2. Ring Counter 3. Twisted-Ring Counter 4. Frequency-Division
51
2.Ring Counter Example: design a M=4 Ring Counter by using CT74195 Binary State Sequence Q0 Q1 Q2 Q3 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 Notice: (1) besides effective states, there are still 5 ineffective states. (2) It has not the ability of self-start. The set-up signal should be applied on SH/Ld to start the loop.
52
Design of Ring Counter (1)How to connect:
The output of shift register Q3 is feedback to the input lines of J,K. (2)determine the number of flip-flops: Modulus of the counter M=n(n is the number of shift registers.)
53
1. Data Conversion 2. Ring Counter 3. Twisted-Ring Counter
(4)Application of Register 1. Data Conversion 2. Ring Counter 3. Twisted-Ring Counter 4. Frequency-Division
54
(1) besides effective states, there is still an ineffective states.
Binary State Sequence Q0 Q Q2 Q3 Example: design a M=8 Twisted-Ring Counter Notice: (1) besides effective states, there is still an ineffective states. (2) It has not the ability of self-start. The set-up pulse signal should be applied on R to clear.
55
Design of Twisted-Ring Counter
(1)How to connect: The output of shift register Q3 is feedback to the input lines of J,K via an inverter. (2)determine the number of flip-flops: Modulus of the counter M=2n(n is the number of shift registers.)
56
1. Data Conversion 2. Ring Counter 3. Twisted-Ring Counter
(4)Application of Register 1. Data Conversion 2. Ring Counter 3. Twisted-Ring Counter 4. Frequency-Division
57
Frequency Divider
58
CHAPTER 6 MODULAR SQUENTIAL CIRCUITS & APPLICATIONS
6-1 Counter 6-2 Register 6-3 Sequence generator 6-4 Digital Clock Summary
59
6-3 Sequence generator 1.Counter type Sequence generator
Periodical serial binary code which is arranged by a certain regulation Arbitrary length sequential code 1.Counter type Sequence generator 2. Feedback type Sequence generator —maximum-length linear sequence generator
60
1. Counter type Sequence generator
(1)Circuit Structure Counter + combinational logic circuits (2)Design Procedure 1.design modulo-s counter according to the length of sequence. States can be determined freely. 2. Design the combinational Circuits for output data according to the requirement.
61
1. Counter type Sequence generator
Example: design a Sequence generator which can generate the code Step 1: design counter (1)Length of Sequence S=12,therefore a modulo-12 is a preference. (2)using CT74161 (3)Synchronous preset(4)let effective states are QDQCQBQA=0100~1111. 1
62
1. Counter type Sequence generator
Step 2: design combinational circuits (1)write out truth table. QD QC QB QA Z (2)Simplification by using K-map (3) Implement logic function by using 8-input data selector: D0=D1=D3=D5=0,D2=D6=1 D4=QA,D7=
63
Implement logic function by using 8-input data selector:
The logic variable ABCD QDQCQB--ABC QA--D Select ABC as address input. The K-Map is as follows: AB CD 00 01 11 10 D0 D1 D2 D3 D6 D7 D4 D5 Compared with the K-Map, the data input Di can be determined. How to determine Di: in the K-Map If what in the corresponding cells are all 1,Di= 1;otherwise, if what in the corresponding cells are all 0,Di = 0. If what in the corresponding cells are 0 and 1, Di is SOP of the variables that correspond to 1-cell.
64
1. Counter type Sequence generator
Step 3: draw the circuit diagram D0=D1= D3 =D5=0 D2=D6=1 D4=QA, D7= Z
65
6-3 Sequence generator 1.Counter type Sequence generator
2. Feedback type Sequence generator —maximum-length linear sequence generator
66
1. Length of maximum-length linear sequence:S=2n-1
2. Feedback type maximum-length linear sequence generator (m sequence generator) 1. Length of maximum-length linear sequence:S=2n-1 2. Circuit Structure: shift register + exclusive-OR Gate (1) According to S=2n-1,determine n. (2) Look up table 6-31 to find out the feedback function f(Q). (3) Draw the circuit diagram. (4) Attach an anti-all-zero logic. 3. Design Procedure:
67
Step 1: S=2n-1,therefore n =3.
2. Feedback type maximum-length linear sequence generator (m sequence generator) Example : Design an S=7 m sequence generator Step 1: S=2n-1,therefore n =3. Step 2: Look up table 6-31 to find out the feedback function:f(Q)=Q2⊕Q3 (即CT74194的DSR= Q1⊕Q2)。 Step 3:draw circuit diagram.
68
2. Feedback type maximum-length linear sequence generator (m sequence generator)
Example : Design an S=7 m sequence generator Step 4: add an all-zero correction Step 5: draw the circuit diagram. By using all-zero state, reload data to implement self-start. The logic diagram is as follows.
69
CHAPTER 6 MODULAR SQUENTIAL CIRCUITS & APPLICATIONS
6-1 Counter 6-2 Register 6-3 Sequence generator 6-4 Digital Clock Summary
70
Digital Clock is a timing equipment to directly display time by digit, which is consist of crystal oscillator, frequency divider, counter, decoder, display,correction , power supply and so on. 6-4 igital Clock
71
Summary A few most commonly used modular sequential circuits such as counter, register, shift register and sequence generator are discussed. Counters can be divided into synchronous and asynchronous; synchronous counters have higher frequency and asynchronous counters have simpler circuits. Shift registers can be divided into left shift registers, right shift registers and bi-directional shift registers.
72
Objective (1)familiarize the function table of MSI modular sequential circuits ; (2)master the function extension of MSI modular sequential circuits ; (3)have the ability of applying the modular sequential circuits and combinational circuits to fulfill specific logic.
73
Exercises
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.