Download presentation
Presentation is loading. Please wait.
Published byEthelbert Hutchinson Modified over 9 years ago
1
An m n matrix is an rectangular array of elements with m rows and n columns: Matrices denotes the element in the ith row and jth column
3
Partitioning in submatrices
4
Matrices y vectores son fundamentales en el estudio formal de todas las ramas de la ingeniería Instrumentación Instrumentación Diseño de circuitos Diseño de circuitos Comunicaciones Comunicaciones Microelectrónica Microelectrónica
5
A column vector is a matrix with n rows and 1 column Vectors A row vector is a matrix with 1 row and n columns
6
Square: Classification of matrices m=n
7
Symmetric: a ji = a ij
8
Upper Triangular: a ij = 0 when j < i
9
Lower Triangular: a ij = 0 when j >i
10
Diagonal: a ij = 0 when j i
11
Identity: a ii = 1 a ij = 0 when j i
12
Sum of matrices of the same dimension:
13
Scalar multiplication B = kA B = kA Dimensions: Dimensions: Example Example
14
Matrix multiplication C = AB C = AB Only possible if the number of columns of A is equal to the number of rows of B
17
examples:
18
Matrix multiplication is a non-commutative operation : Matrix multiplication is a non-commutative operation (generally) :
19
Identity: a ii = 1 a ij = 0 when j i
21
Vector products: (u,v are column vectors) Dot product or inner product Dot product or inner product Outer product: Outer product:
23
Scalar product (of vectors) The product of a row vector a and a column vector b is a scalar a b = a 1 b 1 +... + a n b n
25
Trace The trace of a nxn matrix A is given by:
26
Properties of Matrix Operations a) A+B = B+A b) A+(B+C) = (A+B)+C c) A(BC) = (AB)C d) A(B+C) = AB+AC e) (B+C)A = BA+CA f) a(B+C) = aB+aC Commutative law for addition Associative law for addition Associative for multiplication Left distributive law Right distributive law Distributive law for scalar multiplication
27
j) (a+b)C = aC+bC k) a(bC) = (ab)C l) a(BC) = (aB)C
28
Transpose B = A T Dimensions: Dimensions: Formula: Formula: Example Example
29
Alternative notation used in some books B = A T B = A ’ In this course we use the first one (B = A T )
30
Transpose Matrix properties
31
Symmetric matrix: A T = A Symmetric matrix: A T = A Skew-symmetric matrix: A T = -A Skew-symmetric matrix: A T = -A
32
Unitary matrix example : Unitary matrix example :
33
SymmetricSkew-symmetric Unitary matrix
34
Given any matrix A with real entries: Given any matrix A with real entries:
35
Complex conjugate of matrices
36
Alternative notation used in some books for Matrix Complex Conjugate In this notes we use the bar
37
Complex Hermitian Example:
38
Complex Hermitian Properties
39
definitions
40
examples: examples: Hermitian: Skew-Hermitian Unitary
41
Given any matrix A with complex entries: Given any matrix A with complex entries:
42
(a) Find A such as: (b) Find A such as: Exercises :
44
Exercises
45
Ejercicio: Simplificar Ejercicio: Simplificar
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.