Presentation is loading. Please wait.

Presentation is loading. Please wait.

An m  n matrix is an rectangular array of elements with m rows and n columns: Matrices denotes the element in the ith row and jth column.

Similar presentations


Presentation on theme: "An m  n matrix is an rectangular array of elements with m rows and n columns: Matrices denotes the element in the ith row and jth column."— Presentation transcript:

1 An m  n matrix is an rectangular array of elements with m rows and n columns: Matrices denotes the element in the ith row and jth column

2

3 Partitioning in submatrices

4 Matrices y vectores son fundamentales en el estudio formal de todas las ramas de la ingeniería Instrumentación Instrumentación Diseño de circuitos Diseño de circuitos Comunicaciones Comunicaciones Microelectrónica Microelectrónica

5 A column vector is a matrix with n rows and 1 column Vectors A row vector is a matrix with 1 row and n columns

6 Square: Classification of matrices m=n

7 Symmetric: a ji = a ij

8 Upper Triangular: a ij = 0 when j < i

9 Lower Triangular: a ij = 0 when j >i

10 Diagonal: a ij = 0 when j  i

11 Identity: a ii = 1 a ij = 0 when j  i

12 Sum of matrices of the same dimension:

13 Scalar multiplication B = kA B = kA Dimensions: Dimensions: Example Example

14 Matrix multiplication C = AB C = AB Only possible if the number of columns of A is equal to the number of rows of B

15

16

17 examples:

18 Matrix multiplication is a non-commutative operation : Matrix multiplication is a non-commutative operation (generally) :

19 Identity: a ii = 1 a ij = 0 when j  i

20

21 Vector products: (u,v are column vectors) Dot product or inner product Dot product or inner product Outer product: Outer product:

22

23 Scalar product (of vectors) The product of a row vector a and a column vector b is a scalar a  b = a 1 b 1 +... + a n b n

24

25 Trace The trace of a nxn matrix A is given by:

26 Properties of Matrix Operations a) A+B = B+A b) A+(B+C) = (A+B)+C c) A(BC) = (AB)C d) A(B+C) = AB+AC e) (B+C)A = BA+CA f) a(B+C) = aB+aC Commutative law for addition Associative law for addition Associative for multiplication Left distributive law Right distributive law Distributive law for scalar multiplication

27 j) (a+b)C = aC+bC k) a(bC) = (ab)C l) a(BC) = (aB)C

28 Transpose B = A T Dimensions: Dimensions: Formula: Formula: Example Example

29 Alternative notation used in some books B = A T B = A ’ In this course we use the first one (B = A T )

30 Transpose Matrix properties

31 Symmetric matrix: A T = A Symmetric matrix: A T = A Skew-symmetric matrix: A T = -A Skew-symmetric matrix: A T = -A

32 Unitary matrix example : Unitary matrix example :

33 SymmetricSkew-symmetric Unitary matrix

34 Given any matrix A with real entries: Given any matrix A with real entries:

35 Complex conjugate of matrices

36 Alternative notation used in some books for Matrix Complex Conjugate In this notes we use the bar

37 Complex Hermitian Example:

38 Complex Hermitian Properties

39 definitions

40 examples: examples: Hermitian: Skew-Hermitian Unitary

41 Given any matrix A with complex entries: Given any matrix A with complex entries:

42 (a) Find A such as: (b) Find A such as: Exercises :

43

44 Exercises

45 Ejercicio: Simplificar Ejercicio: Simplificar

46


Download ppt "An m  n matrix is an rectangular array of elements with m rows and n columns: Matrices denotes the element in the ith row and jth column."

Similar presentations


Ads by Google