Presentation is loading. Please wait.

Presentation is loading. Please wait.

T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.

Similar presentations


Presentation on theme: "T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi."— Presentation transcript:

1 T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi – June 6th 2007 Strong dipolar effects in a Chromium BEC A quantum ferrofluid

2 Interacting quantum systems in AMO physics Long range Isotropic Short range Isotropic Coulomb interactionDipole-dipole interactionContact interaction MITInnsbruck Long range - Anisotropic

3 New physics in dipolar quantum gases Dipole-dipole interactions are: - anisotropic - instability - modified dispersion relation (roton) - new equilibrium shapes (biconcave BEC) - long range - new quantum phases in optical lattices - supersolid phase pancake

4 Chromium How to get a Chromium BEC? Dipolar expansion Demagnetization cooling Strong dipolar effects in a Cr BEC Outlook Outline – BEC with MDDI

5 I. Chromium Yb Ground state 7 S 3 Magnetic dipole moment  = 6  B.

6 Way to BEC Continously loaded Ioffe Pritchard trap (CLIP-trap) J. Stuhler et al. PRA 64, 031405 (2001); P. O. Schmidt et al. J. Opt. B 5, S170 (2003) Doppler cooling in compressed IP-trap P. O. Schmidt, et al., J. Opt. Soc. Am. B 20, 5 (2003) >10 8 atoms in the ground state phase space density ~10 -7 Rf-evaporation Stop by dipolar relaxation! No cold & dense cloud (no BEC) in MT! S. Hensler et al., Appl. Phys. B 77, 765 (2003) +E+E+2  E m = 3 m = 2 m = 1

7 Transfer to optical dipole trap Advantages: all magnetic substates are trapped (no dip. relaxation) operation at arbitrary magnetic offset field (Feshbach resonance) optical pumping in m j =-3  m j = -3 m j = + 3 7S37S3 7P37P3

8 Forced evaporation in ODT BEC with up to 100.000 atoms horizontal beam vertical beam

9 Dipolar expansion of a BEC Elongation along magnetization direction! Density Mean-field potential due to MDDI PRL 95, 150406 (2005). PRA 74, 013621 (2006). First Observation of mechanical effect of a homogenous magnetic field on a gas

10 II. Demagnetization cooling Why another cooling scheme ????? ► doppler cooling techniques limited by reabsorption ► evaporative cooling throw away 99 % of your atoms ► demagnetization cooling Kastler, Journal de physique et le radium 11, 255 (1950). Cirac, Lewenstein, Phys Rey A 52, 6 (1995).

11 basic idea 1. Initialization 3. Optical pumping 2. Lowering B-field Needed: 1.Suitable level scheme 2.Strong enough coupling  m j = -3 m j = + 3 7S37S3 7P37P3 -E-E m = -1 m = -2 m = -3

12 T 0 ? Solid vs.gas decrease of B-field solid kBkB spins phonons gas kBkB kBkB kBkB kBkB kBkB kBkB kBkB spins phonons But we can pump back !

13 Results: Single step M. Fattori et.al. Nature Physics 2, 765 (2006) 1G 50mG

14 Experimental challenges bad polarization due to (a) badly polarized light (b) transverse magnetic fields  (a) polarization quality 1/1000 (b) transverse fields below 5mG

15 Results: Optimized ramps

16 Atoms with large magnetic dipole moment . Chromium: 6  B. Small  dd … but a tunable BEC !!! III. Strong dipolar effects in a BEC Strength of the dipole-dipole interaction: Heteronuclear molecules (electric dipole moment d ) Large d (~1 Debye): No BEC yet Griesmaier et.al. PRL 97, 250402 (2006) Griesmaier et.al. PRL 94, 160401 (2005)

17 Tuning a with a Feshbach resonance scattering length a can be tuned with B-field ! V(R) collision with molecular potential V(R): EcEc  a ! describes scattering @ low T V’(R) V’(R) with M s’ ≠ M s + B-field Vc  a is modified ! + coupling:

18 [J. Werner et al., PRL 94, 183201, (2005)] Broadest resonance at 589.1 G (  = 1.7 G) Field stability better than 10 -4 required! Tuning a with a Feshbach resonance

19 Tuning the scattering length Without MDDI: measure a through the released energy a ~ R 5 / N Correct for the MDDI effects (hydrodynamic theory, TF regime).

20 Aspect ratio vs. B Dipole-dipole interactions: elongation along. 0.9 0.7 0.6 0.4 0.2 a / a bg z y

21 Aspect ratio vs.  dd Theory without any adjustable parameter !!!

22 Dipolar expansion with tunable ε dd ε dd =0.16 „ε dd =0“ ε dd =0.75 ε dd =0.5 ε dd =0.16 „ε dd =0“ Stuhler et.al. PRL 95, 150406 (2005)Lahaye et.al. Nature in press

23 1 / e lifetime of the condensate: Limits: inelastic losses Use of a Feshbach resonance

24 Summary and Outlook I. Dipole-dipole interaction & ultracold Cr atoms II. Demagnetization cooling III. New regime of strong dipolar interactions  New physics 1D lattice: A stack of pancakes

25 Thanks for your attention! T. Lahaye B. Fröhlich M. Fattori T. Koch T. Pfau A. Griesmaier J. Metz Theory: S. Giovanazzi http://www.pi5.uni-stuttgart.de/ SFB/TR 21SPP1116 The Cr team:

26

27 Summary and Outlook One-dimensional optical lattice: a stack of pancake traps. Ø stabilize the BEC with respect to dipolar collapse? Ø study spectrum of excitations? Ø (more) stable molecules? By tuning a we enter a new regime Ø stabilize the BEC with respect to dipolar collapse? Ø study spectrum of excitations? Ø (more) stable molecules?

28 Chromium BEC i.Continuous loading of a Ioffe-Pritchard trap. ii.RF evaporation. iii.Transfer to crossed ODT (50 W @ 1070 nm), optical pumping, and forced evaporation. iv.10 5 atoms in BEC! A. Griesmaier et al., PRL 94, 160401 (2005). PRL 95, 150406 (2005). PRA 74, 013621 (2006). Magnetic dipole-dipole interactions: Cloud more elongated along magnetic field

29 Use of a Feshbach resonance One can tune the scattering length with an external magnetic field: Feshbach resonances in Chromium [J. Werner et al., PRL 94, 183201, (2005)] Broadest resonance at 589.1 G (  = 1.7 G) Field stability better than 10 -4 required!

30 Modified experimental setup Offset coils Crossed ODT z y x - Uniform field ~ 600 G - offset (400 A) + pinch (15 A) - curvature compensation - actively stabilized at 10 -4 level - Absorption imaging in high field - Experimental sequence: Pinch coils time Magnetic field P horiz. beam B evap 5 ms Forced evap. BEC Shape trap (50 ms) B0B0 Ramp to B (5 ms) 5 ms tof Hold (2 ms)

31 Tuning the scattering length Without MDDI: measure a through the released energy a ~ R 5 / N Correct for the MDDI effects (hydrodynamic theory, TF regime). 18 3.5 3 1.9 1.5 B-B 0 [G]

32 title


Download ppt "T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi."

Similar presentations


Ads by Google