Download presentation
Presentation is loading. Please wait.
Published byAlexander O’Brien’ Modified over 9 years ago
1
26th Jan. 2010Physics of Nuclei at Extremes, TokyoTech1 Recent activities with slow and stopped RI at Tohoku-Cyclotron Cyclotron and Radioisotope Center (CYRIC), Tohoku Univ.: K. Shimada, S. Hoshino, S. Izumi, H. Ouchi, A. Sasaki, T. Wakui, T. Shinozuka, RIKEN: Y. Miyashita KUR: M. Tanigaki JAEA: M. Asai, N. Sato International Workshop on Physics of Nuclei at Extremes, Jan. 2010, TokyoTech 1. Introduction of CYRIC 2. Production of medium- heavy neutron-rich nuclei 1. RF Ion-guide ISOL 3. Recent results 1. half life of 103m Tc and 105m Ru 2. g-factor of 109m Rh and 132m I
2
26th Jan. 2010 Physics of Nuclei at Extremes, TokyoTech 2 A B 2 1 10 9 8 7 6 4 5 3 A AVF Cyclotron (K=110 MeV) B HM12 Cyclotron (production of positron emitters for PET) 1 RI production 3 High-intensity fast neutron ( Ep = 20-80 MeV 、 E = 1 MeV 、 10 6 n/cm 2 s A) 4 Large acceptance -ray detector array (Hyperball2) (6 Clover type + 14 Single type) 5 Heavy-ion irradiation (in air) 7 Material irradiation 8 High-resolution beam line and large scattering chamber 9 Charged particle radiation therapy 10 Beam swinger and Large solid angle neutron detection system Slow RIB facility 2 RF ion-guide isotope separator on-line (RFIGISOL) 6 Surface ionization ion source for electron EDM measurement Cyclotron and Radioisotope Center (CYRIC), Tohoku University Cyclotron facility
3
26th Jan. 2010 Physics of Nuclei at Extremes, TokyoTech 3 Purpose and background Nuclear structure of the medium-heavy neutron-rich nuclei Life times and B(E2) of isomers Nuclear moments Independent of nuclear structure model Single-particle energies and configurations of wave function Known magnetic moments N=50N=82 Z=50 Z=28 Stable (Sn) (Ni) High-melting point ↓ hardly produced by ISOLDE type ISOL ↓ Development of RFIGISOL (BigRIPS, FRS) 100 Zn 132 Sn RI をプローブとした物性研究へ展開
4
26th Jan. 2010 Physics of Nuclei at Extremes, TokyoTech 4 Comparison of RI Production methods Projectile-fragment separators In-flight A primary beam > A 2ndary beam ISOL ( ⊃ RFIGISOL) A primary beam <<A 2ndary beam <A target Target fragmentation Fission of 238 U etc. ⇒ Middle-heavy neutron-rich nuclei RFIGISOL ⇒ High-melting-point and short-life RI
5
26th Jan. 2010 Physics of Nuclei at Extremes, TokyoTech 5 Correction of fission products with gas Stop, thermalization and ionization ISOL: Thermal diffusion and surface ionization RFIGISOL: Large He gas volume and avoidance of neutralization Independent of chemical properties Highest ionization energy of He How are the fission products collected to the nozzle? 300 mm 200 mm Exit hole 1 mm U target Fission products 3-kPa He Gas stream DC field RF field RFIGISOL ISOL ~3000K U target Proton Recoil with several MeV Recoil, ~MeV =Ion + + Ionizer
6
26th Jan. 2010 Physics of Nuclei at Extremes, TokyoTech 6 Φ220 mm exit hole 1.2 mm Base film: 50-μm-thick kapton Electrodes: 360 rings at 0.6-mm intervals E DC E RF Track of ions RF electrodes (RF carpet) y x Trapping potential (for ion in resonance) x y RF phase originally developed by M. Wada, RIKEN
7
26th Jan. 2010 Physics of Nuclei at Extremes, TokyoTech 7 Typical parameters of RFIGISOL Target: natural Uranium (Effective thickness: 190 mg/cm2) Stop and thermalization: He gas (3 kPa), ~10 4 cm 3 Guide: DC field (~5 V/cm) Giude: RF field (~3 MHz, ~50 V pp ) Extraction: Gas jet +DC field (~1 kV) Mass spectrometer Proton beam (50 MeV, 1 A) Acceleration: DC 30 kV CYRIC 2nd target room m
8
26th Jan. 2010 Physics of Nuclei at Extremes, TokyoTech 8 Photo ~ RFIGISOL chamber proton Acceleration: DC 30 kV U target He gas: 3 kPa DC field: 5 V/cm RF field: 3 MHz,50 V pp Mass spectrometer
9
26th Jan. 2010 Physics of Nuclei at Extremes, TokyoTech 9 112 Rh ~4000 112 Ru ~400 100 Nb ~1300 100 Zr ~1300 100 Y ~400 91 Rb ~400 80 As ~200 80 Ge ~200 119 Cd ~800 119 Ag ~400 78 Ni Fission production cross section Yields with RFIGISOL Primary beam: Proton, 50 MeV, 1 μA Yield at beam-line end, after passing mass spectrometer Stable line 107 Tc ~2400 107 Ru ~4600 [particles/sec] 109 Tc ~1300 109 Ru ~1300 111 Tc ~1100 111 Ru ~7100? 114 Pd ~9000 Bold: 2009 Normal: 2007 105 Tc ~2400 100 Zr 132 Sn 10 mb 1 mb 0.1 125 Pd (BigRIPS) Obtained Yields ∝ Expected Yields 132 Te ~1000 Recent experiments T 1/2 : 103m Tc, 105m Ru g-factor: 109m Rh, 132m I
10
26th Jan. 2010 Physics of Nuclei at Extremes, TokyoTech 10 Recent experiments (1) Life-time measurement
11
26th Jan. 2010 Physics of Nuclei at Extremes, TokyoTech 11 Setup of life-time measurement Beam monitor (co-axial Ge) 1. Implantation: ~1τ 2. Transfer : ~5 s 3. Measurement: ~1τ Detectors for life-time measurement good time resolution Planar Ge: ~1 ns BaF 2 : ~0.01 ns System: 5 ns good energy resolution 10-ns isomers → Measurable
12
26th Jan. 2010 Physics of Nuclei at Extremes, TokyoTech 12 Preliminary results – 163.74 keV : 55 ns → ~18 ns – 246.26 keV : ~15 ns 1ch = 0.25 nsec 105 Ru 103 Tc [Y. Miyashita, Tohoku Univ. / RIKEN] [K. Shimada, H. Ouchi, Tohoku Univ.] Preliminary result – 83.38 keV : ~40 ns Recent experiments (1) Life of Isomer (5/2-,3/2-) 3/2+,5/2+ (5/2)+
13
26th Jan. 2010 Physics of Nuclei at Extremes, TokyoTech 13 Recent experiments (2) g-factor measurement
14
26th Jan. 2010 Physics of Nuclei at Extremes, TokyoTech 14 Time differential Perturbed Angular Correlation methods (TDPAC) det. 1 0° det. 2 90° det. 3 180° ° intensity distribution B ext
15
26th Jan. 2010 Physics of Nuclei at Extremes, TokyoTech 15 Ge detectors Magnet (0.34 T) [Y. Miyashita, Tohoku univ. / RIKEN] On-line TDPAC method (Time differential perturbed angular correlation) Tape transport system Detection system g = 0.78 + 0.17 - 0.03 [N][N] BaF 2 detectors Tape TDPAC spectrum B = 0.34 T (2) g-factor in 109m Rh (Ex=225.98 keV, T1/2=1.66 ms)
16
26th Jan. 2010 Physics of Nuclei at Extremes, TokyoTech 16 I =3/2 + I =5/2 + I =3/2 + I =5/2 + (2 + ) ⊗ (g 9/2 ) 93Nb 4.9483(3)4.8049(2) (4 + ) ⊗ (g 9/2 ) 93Nb 2.2496(1)2.8773(1) (2 + ) ⊗ (g 7/2 ) 123Sb 1.4781(2)1.8672(2) (4 + ) ⊗ (g 7/2 ) 123Sb 0.57899(1)1.22493(2) (2 + ) ⊗ (d 5/2 ) 141Pr 2.3047(3)3.1587(2) (4 + ) ⊗ (d 5/2 ) 141Pr -1.3430(3)0.55323(4) (2 + ) ⊗ (d 3/2 ) 169Tm 0.871(2)0.586(2) (4 + ) ⊗ (d 3/2 ) 169Tm 3.294(19)2.317(5) (2 + ) ⊗ (s 1/2 ) 193Ir 0.4561(1)0.5389(2) (4 + ) ⊗ (s 1/2 )1 93Ir 1.9024(10)1.5719(3) I =3/2 + I =5/2 + 1.17 +0.23+0.03. 1.95 +0.38+0.05 - 0.02 - 0.03 - 0.03 - 0.05 or magnetic moment 109 Rh 225 keV state simple single-particle + excited-core coupling a proton core: excited 2 + or 4 + in 108 Ru 1g 9/2, 1g 7/2, 2d 5/2, 2d 3/2, 3s 1/2 of single-particle ground state Magnetic moments
17
26th Jan. 2010 Physics of Nuclei at Extremes, TokyoTech 17 ( B hf = +26.5 ±0.5 T ) PAC spectrum in the Ni foil Magnetic moment in 132m I = +(2.06 ± 0.18) N BaF 2 detectors×3 Tanigaki, PRC80(2009)034304
18
26th Jan. 2010 Physics of Nuclei at Extremes, TokyoTech 18 Comparison of a simple jj-coupling model of odd-odd nucleus ( N ) Ref. Experiment +2.06 ± 0.18 This work +2.22 ± 0.30 Singh et al. by TIPAC Calculation ( g 7/2 )( d 3/2 ) −1 +2.40 ( d 5/2 )( d 3/2 ) −1 +2.83 Values for empirical g factors ( g 7/2 ) +2.80 Av. 131, 133 I ( d 5/2 ) +2.81 Av. 129, 131 I ( d 3/2 ) −1 +0.75 Av. 131 Te, 133 Xe ←proton-odd ←neutron-odd odd-odd nucleus is described based on a jj-coupling model
19
26th Jan. 2010 Physics of Nuclei at Extremes, TokyoTech 19 Summary CYRIC facility 2 cyclotrons and 10 beam lines Production of RI beam using RFIGISOL RFIGISOL ISOL specified for high-melting-point and short-life nuclei Large He gas buffer and RF carpet Recent results life-time : 105m Ru , 103m Tc Planar Ge-BaF2 system g-factor and μ : 109m Rh , 132m I TDPAC Next plan: g-factor of 105m Ru
20
26th Jan. 2010 Physics of Nuclei at Extremes, TokyoTech 20 Thank you for your attention
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.