Download presentation
Presentation is loading. Please wait.
Published byQuentin Harvey Modified over 9 years ago
1
B. Golob, Belle II 1/23Epiphany Conference, Cracow, Jan 2012 Boštjan Golob University of Ljubljana/Jožef Stefan Institute & Belle/Belle II Collaboration The Belle II Project University of Ljubljana “Jožef Stefan” Institute Epiphany Conference, Cracow, January 2012 IntroductionPID AcceleratorCalorimeter VertexGeneral Introduction Accelerator Detector Vertex physics example PID physics example Calorimeter physics example General requirements
2
B. Golob, Belle II 2/23Epiphany Conference, Cracow, Jan 2012 Introduction Quest for NP.......consists of energy frontier direct observation of new particles & processes using highest achievable energies intensity frontier indirect observation of NP effects on (rare) known processes (cosmic frontier) IntroductionPID AcceleratorCalorimeter VertexGeneral bližina otoka Veli Drvenik, sept. 2011 Intensity frontier Energy frontier
3
B. Golob, Belle II 3/23Epiphany Conference, Cracow, Jan 2012 Introduction Quest for NP LHC at the energy frontier V. Sharma, LP11 conference 95% C.L. exclusion limits in mass SUSY plane H. Bachacou, LP11 conference 95% C.L. exclusion limits on MSSM A 0 1 TeV SUSY in the simplest forms seems to be excluded IntroductionPID AcceleratorCalorimeter VertexGeneral
4
B. Golob, Belle II 4/23Epiphany Conference, Cracow, Jan 2012 Introduction Quest for NP B factories, LHCb,... at the intensity frontier B mesons sector D mesons sector = CKM Fitter, Summer 2011 HFAG, December 2011 Hints of deviations from SM at few level IntroductionPID AcceleratorCalorimeter VertexGeneral direct measurement indirect determination
5
B. Golob, Belle II 5/23Epiphany Conference, Cracow, Jan 2012 Introduction Quest for NP Intensity frontier requirements for future facilities (quark sector) 1/ N O (10 2 ) higher luminosity complementarity to other intensity frontiers experiments (LHCb, BES III,....); accurate theoretical predictions to compare to NP flavor violating couplings( 1 in MFV) NP reach in terms of mass Terra Incognita Illustrative reach of NP searches IntroductionPID AcceleratorCalorimeter VertexGeneral
6
B. Golob, Belle II 6/23Epiphany Conference, Cracow, Jan 2012 Introduction Accelerator B-Factory”, “B-Factory”, KEKB @ KEK KEKB: e - (HER): 8.0 GeV e + (LER): 3.5 GeV crossing angle: 22 mrad E CMS =M( (4S))c 2 dN f /dt = (e + e - →f) L Tokyo (40 mins by Tsukuba Exps) L dt = 1020 fb -1 2010 1999 accelerator institute e-e- e+e+ (1.02 ab -1 ) IntroductionPID AcceleratorCalorimeter VertexGeneral
7
B. Golob, Belle II 7/23Epiphany Conference, Cracow, Jan 2012 Introduction (e + e - → c c) 1.3 nb (~1.3x10 9 X c Y c pairs) ”continuum” production “on resonance” production e + e - → (4S) → B d 0 B d 0, B + B - (e + e - → BB) 1.1 nb (~10 9 BB pairs) Belle L dt 1020 fb -1 Accelerator B-Factory”, “B-Factory”, KEKB @, KEK (e + e - →hadroni) [nb] b b u,d b b (4S) B d 0, B + B d 0, B - energ. threshold for BB production ** c c e-e- e+e+ hadrons IntroductionPID AcceleratorCalorimeter VertexGeneral running at Y(nS), e.g. Y(5S) (B s B s )
8
B. Golob, Belle II 8/23Epiphany Conference, Cracow, Jan 2012 Accelerator SuperKEKB x ~100 m, y ~2 m x ~10 m, y ~60nm e-e- e+e+ Nano beams design (P. Raimondi) small y * large y ( y */ y ) small y hourglass effect small x * increase I *: beta-function (trajectories envelope) at IP y : beam-beam parameter L [s -1 cm -2 ] ∫L dt [ab -1 ] design L =8·10 35 s -1 cm -2 current B factories ∫L dt=10 ab -1 (2018) ∫L dt=50 ab -1 (2022) IntroductionPID AcceleratorCalorimeter VertexGeneral KEKB SuperKEKB
9
B. Golob, Belle II 9/23Epiphany Conference, Cracow, Jan 2012 Accelerator Damping ring Low emittance gun Positron source New beam pipe & bellows Belle II New IR TiN-coated beam pipe with antechambers Redesign the lattices of HER & LER to squeeze the emittance Add / modify RF systems for higher beam current New positron target / capture section New superconducting /permanent final focusing quads near the IP Low emittance electrons to inject Low emittance positrons to inject Replace short dipoles with longer ones (LER) Super KEKB e+e+ e-e- IntroductionPID AcceleratorCalorimeter VertexGeneral
10
B. Golob, Belle II 10/23Epiphany Conference, Cracow, Jan 2012 Detector CsI(Tl) EM calorimeter: waveform sampling electronics, pure CsI for end-caps 4 layers DSSD → 2 layers PXD (DEPFET) + 4 layers DSSD Central Drift Chamber: smaller cell size, long lever arm 7.4 m 7.1 m Time-of-Flight, Aerogel Cherenkov Counter → Time-of-Propagation counter (barrel), prox. focusing Aerogel RICH (forward) RPC & K L counter: scintillator + Si-PM for end-caps 1.5 m 3.3 m Belle II IntroductionPID AcceleratorCalorimeter VertexGeneral
11
B. Golob, Belle II 11/23Epiphany Conference, Cracow, Jan 2012 Vertex detector PXD+SVD Belle II r [cm] SVD Belle z [cm] sBelle Design Group, KEK Report 2008-7 DSSD’s pixels z [cm] DEPFET matrix DCDB R/O chip Switcher control chip prototype DEPFET sensor DEPFET mockup Si Vertex Det. Belle Belle II 10 m 20 m z impact parameter resolution p sin 5/2 ( ) [GeV/c] IntroductionPID AcceleratorCalorimeter VertexGeneral
12
B. Golob, Belle II 12/23Epiphany Conference, Cracow, Jan 2012 t-dependent CPV B → K* (→K S 0 ) t-dependent CPV SM: S CP K* -(2m s /m b )sin2 1 -0.04 Left-Right Symmetric Models: S CP K* 0.67 cos2 1 0.5 S CP Ks 0 = -0.15 ±0.20 A CP Ks 0 = -0.07 ±0.12 HFAG, Summer’11 (~SM prediction) D. Atwood et al., PRL79, 185 (1997) B. Grinstein et al., PRD71, 011504 (2005) (S CP Ks 0 )= 0.09 @ 5 ab -1 0.03 @ 50 ab -1 0.03 @ 50 ab -1 t-dependent decays rate of B → f CP ; S and A: CP violating parameters 5 ab -1 50 ab -1 IntroductionPID AcceleratorCalorimeter VertexGeneral
13
B. Golob, Belle II 13/23Epiphany Conference, Cracow, Jan 2012 Proximity focusing Aerogel RICH (endcap) PID Time Of Propagation counter (barrel) partial Cerenkov ring reconstruction from x, y and t of propagation prototype quartz bar Hamamatsu 16ch MCP-PMT Aerogel radiator Hamamatsu HAPD Cherenkov photon 200mm n~1.05 Hamamatsu HAPD Aerogel IntroductionPID AcceleratorCalorimeter VertexGeneral x y
14
B. Golob, Belle II 14/23Epiphany Conference, Cracow, Jan 2012 Direct CPV DCPV puzzle: tree+penguin processes, B +(0) →K + A K = A(K + - )- A(K + 0 )= -0.127±0.022 model independent sum rule: A(K 0 + )=0.009 ±0.025 A(K + 0 )=0.050 ±0.025 A(K + - )=-0.098 ±0.012 A(K 0 0 )=-0.01 ±0.10 M. Gronau, PLB627, 82 (2005); D. Atwood, A. Soni, PRD58, 036005 (1998) HFAG, Summer’11 Belle II 50 ab -1 A(K 0 0 ) A(K 0 + ) sum rule A(K + 0 ) measured (HFAG) expected (sum rule) Belle, Nature 452, 332 (2008), 480 fb -1 misidentif. bkg. B 0 →K + IntroductionPID AcceleratorCalorimeter VertexGeneral P. Chang, EPS’11
15
B. Golob, Belle II 15/23Epiphany Conference, Cracow, Jan 2012 EM Calorimeter ECL (barrel): new electronics with 2MHz wave form sampling ECL (endcap): pure CsI crystals; (may be staged) faster performance and better rad. hardness than Tl doped CsI t ECL signal t ECL signal amplitude time sampling 2x improved at 20x bkg. IntroductionPID AcceleratorCalorimeter VertexGeneral trigger off-time bkg. signal
16
B. Golob, Belle II 16/23Epiphany Conference, Cracow, Jan 2012 E miss measurements B , h fully (partially) reconstruct B tag ; reconstruct h from B sig →h or → h ; no additional energy in EM calorim.; signal at E ECL ~0; B tag full reconstruction: NeuroBayes; TOP detector; ECL, increased background; Example of B h measurement: Missing E ( ) B sig → candidate event B sig B tag -- exp. signal (20xBr) exp. bkg. (scaled to sideband) Belle, PRL99, 221802 (2007), 490 fb -1 hadr. tag signal region IntroductionPID AcceleratorCalorimeter VertexGeneral B (B 0 →K* 0 nn ) < 3.4 ·10 -4 @ 90% C.L.
17
B. Golob, Belle II 17/23Epiphany Conference, Cracow, Jan 2012 E miss measurements B h B sig B tag (h )(X l ) semil. tag (h )(X) hadr. tag B (B + K ( * )+ ) can be measured to ±30% with 50 ab -1 ; limits on right-handed currents W. Altmannshofer et al., arXiv:0902.0160 SM IntroductionPID AcceleratorCalorimeter VertexGeneral
18
B. Golob, Belle II 18/23Epiphany Conference, Cracow, Jan 2012 SuperKEKB requirements O (10 2 ) higher luminosity SuperKEKB will deliver 50 ab -1 complementarity to other intensity frontiers experiments (LHCb, BES III,....); accurate theoretical predictions to compare to ∫L dt [ab -1 ] current B factories ∫L dt=50 ab -1 (2022) 2010 2012 2014 2016 2018 2020 2022 IntroductionPID AcceleratorCalorimeter VertexGeneral
19
B. Golob, Belle II 19/23Epiphany Conference, Cracow, Jan 2012 SuperKEKB requirements O (10 2 ) higher luminosity complementarity to other intensity frontiers experiments (LHCb, BES III,....); accurate theoretical predictions to compare to G. Isidori et al., Ann.Rev.Nucl.Part.Sci. 60, 355 (2010) Super B factory LHCb K experiments IntroductionPID AcceleratorCalorimeter VertexGeneral B (B →X s ) 6% Super-B B (B →X d ) 20% Super-B S(B → ) 0.15 Super-B B ( → ) 3 ·10 -9 Super-B (90% U.L.) B (B + →D ) 3% Super-B B (B s → ) 0.25 ·10 -6 Super-B (5 ab -1 ) sin 2 W @ (4S) 3 ·10 -4 Super-B
20
B. Golob, Belle II 20/23Epiphany Conference, Cracow, Jan 2012 SuperKEKB requirements IntroductionPID AcceleratorCalorimeter VertexGeneral Methods and processes where Super B factory can provide important insight into NP complementary to other experiments: (shown are expected sensitivities @ 50 ab -1 ) E miss : B (B→ ), B (B → X c ), B (B → h ),... ±3% ±3% ±30% Inclusive: B (B → s ), A CP (B → s ), B (B → s ll ),... ±6% ±5 ·10 -3 ±1 ·10 -7 Neutrals: S(B → K S 0 ), S(B → ’ K S ), S(B → K S K S K S ), B ( → ), B (B s → ),... ±0.03 ±0.02 ±0.03 ±3 ·10 -9 ±3 ·10 -7 Detailed description of physics program at Super B factories at: A.G. Akeroyd et al., arXiv: 1002.5012 B. O’Leary et al., arXiv: 1008.1541
21
B. Golob, Belle II 21/23Epiphany Conference, Cracow, Jan 2012 SuperKEKB requirements A.G. Akeroyd et al., arXiv:1002.5012 contours of S(K S 0 ) Example of complementarity: MSSM searches Belle II constraints shown @ 5 ab -1 LHCb: Br(B s + - )~ (4-5)x10 -9 (@ 3 fb -1 ) S(K S 0 ) ~ -0.4±0.1 S(K S 0 ) ~ 0.1±0.1 Belle II/LHCb combination: stringent limits on Re( d RL ) 23, tan tan Re( d RL ) 23 IntroductionPID AcceleratorCalorimeter VertexGeneral
22
B. Golob, Belle II 22/23Epiphany Conference, Cracow, Jan 2012 SuperKEKB requirements O (10 2 ) higher luminosity complementarity to other intensity frontiers experiments (LHCb, BES III,....); accurate theoretical predictions to compare to G. Isidori et al., Ann.Rev.Nucl.Part.Sci. 60, 355 (2010) theory uncertainty matches the expected exp. precision theory uncertainty will match the expected exp. precision with expected progress in LQCD IntroductionPID AcceleratorCalorimeter VertexGeneral
23
B. Golob, Belle II 23/23Epiphany Conference, Cracow, Jan 2012 Summary IntroductionPID AcceleratorCalorimeter VertexGeneral The SuperKEKB and Belle II project approved by the Japanese government Truly int. coll. with strong European participation Groundbreaking ceremony in November last year Both accelerator upgrade and detector re-building are well on track SuperKEKB will provide 50 ab -1 by 2022, Belle II detector with equal or better performance than Belle under higher backgrounds Next collaboration meeting: March 2012, open to everyone
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.