Presentation is loading. Please wait.

Presentation is loading. Please wait.

Compound Angles Higher Maths.

Similar presentations


Presentation on theme: "Compound Angles Higher Maths."— Presentation transcript:

1 Compound Angles Higher Maths

2 Compound Angles Click on an icon Trig Equations 1 Trig Equations 2 Ans
Sin (A+B), Sin (A-B) Exact Values Cos (A+B) , Cos (A-B) Higher trig. questions Using the four formulae

3 Solve the following equations for 0 < q < 2 , q  R
Trigonometric Equations 1 Solve the following equations for 0 < x < 360, x  R 1.      2sin 2x + 3cos x = 0 2.      3cos 2x - cos x + 1 = 0 3.      3cos 2x + cos x + 2 = 0 4.      2sin 2x = 3sin x 5.      3cos 2x = 2 + sin x 6.      10cos2 x + sin x - 7 = 0 7.      2cos 2x + cos x - 1 = 0 8.      6cos 2x - 5cos x + 4 = 0 9.      4cos 2x - 2sin x - 1 = 0 10.    5cos 2x + 7sin x + 7 = 0 Solve the following equations for 0 < q < 2 , q  R 11.      sin 2q - sin q = 0 12.      sin 2q + cos q = 0 13.      cos 2q + cos q = 0 14.      cos 2q + sin q = 0

4 Trig Equations 1 - Solutions.
1.      {90, 229, 270, 311} 2.      {48, 120 , 240, 312} 3.      {71,120 , 240 , 289} 4.      {0, 41 , 180 , 319} 5.      {19 , 161 , 210 , 330 } 6.      {37, 143, 210, 330} 7.      {41, 180, 319} 8.      {48, 104, 256, 312} 9.      {30, 150, 229, 311} 10.      {233, 307} 11.      {0, /3 ,  , 5/3 , 2} 12.      { /2 , 7/6 , 3 /2 , 11 /6} 13.      { /3, , 5 /3} 14.      { /2 , 7/6 , 11/6}

5 4cos2x + 13sinx – 9 = 0 12 3cos2x – 7cosx + 4 = 0 11 2sin2x = 3sinx 10
Trig. Equations 2 Use the formula Sin2x = 2sinxcosx , Cos2x = 2cos2x -1 = 1 – 2sin2x to solve the following equations, for 0 < x < 360, x  R 4cos2x + 13sinx – 9 = 0 12 3cos2x – 7cosx + 4 = 0 11 2sin2x = 3sinx 10 2cos2x – sinx + 1 = 0 9 2cos2x – 9cosx – 7 = 0 8 3sin2x = 5cosx 7 5cos2x + 11sinx – 8 = 0 6 cos2x + cosx = 0 5 sin2x = sinx 4 2cos2x + 4sinx + 1 = 0 3 3cos2x – 10cosx + 7 = 0 2 5sin2x = 7cosx 1

6 Trig Equations (2) - Solutions
{ 39°, 90°, 141°} 12 { 80°, 280°} 11 { 41°, 180°, 319°} 10 { 49°, 131°, 270°} 9 { 221°, 139°} 8 { 56°, 90°, 124°, 270°} 7 { 30°, 37°, 143°, 150°} 6 { 60°, 180°, 300°} 5 4 { 210°, 330°} 3 { 48°, 312°} 2 { 44°, 90°, 136°, 270°} 1 Solution Question

7 Trigonometric equations 3
Solve for 0 x 360o 1. 5cos2x + sinx – 2 = 0 2. 3cos2x – 2cosx + 3 = 0 3. 5sin2x = 7cosx 4. cos2x + 4sinx -1 = 0 5. 7sin2x = 13sinx 6. cos2x + sinx – 1 = 0 7. 3cos2x + sinx – 1 = 0 8. 2cos2x + cosx – 3 = 0 9. 3sin2x = sinx cos2x -17cosx + 1 = 0 11. cos2x – 8cosx + 1 = 0 12. 4sin2x = 5cosx 13, 8cos2x + 38cosx + 29 = 0 14. 3cos2x – 11sinx – 8 = 0

8 Trig Equations 3 - Solutions
1. SS = {37,143,210,330} SS = {71,90,270,289} 3. SS = {44,90,136,270} SS = {0,180,360} 5. SS = {0,22,180,338,360} SS = {0,30,150,180,360} 7. SS = {42,138,210,330} SS = {0,360} SS = {0,80,180,280,360} SS = {107,253} 11. SS = {90,270} SS = {39,90,141,270} 13. SS = {151,209} SS = {236,270,304}

9 Continued on next slide

10

11 Continued on next slide

12

13 Continued on next slide

14

15 By writing 210 as 180 + 30 , find the exact value of sin210
Exact Values Worked example 1 By writing 210 as 180 + 30 , find the exact value of sin210 Solution 1 sin210 = sin(180 + 30) = sin180cos30 + cos180 sin30 = + (-1) . = - Worked example 2 By writing 315 as 360 - 45 , find the exact value of cos315 Solution 2 cos315 = cos(360 - 45) = cos360 cos45 + sin360 sin45 = = Continued on next slide

16 Use the previous ideas to find the exact values of the following
1. sin 150 cos 225 sin 240 4. cos 300 sin 120 cos 135 7. sin 135 cos 210 sin 315

17 done the course work on trigonometry.
Higher Trigonometry Questions This set of questions would be suitable as revision for pupils who have done the course work on trigonometry. 1. If A is acute and , find the exact values of sin2A and cos2A 2. If A is obtuse and , find the exact values of sin2A and cos2A. 3. If A and B are acute and , find the exact value of cos (A-B). 4. If A is acute and , find the exact value of cos2A. Continued on next slide

18 5. Solve the equations for 5sin2x = 7cosx 5cos2x – 7cosx + 6 = 0
4cos2x – 10sinx -7 = 0 4sin2x = 3sinx 8cos2x – 2cosx + 3 = 0 3cos2x + 7sinx – 5 = 0 6sin2x = 11sinx a) b) 2sin2x +sinx = 0 c) cos2x – 4cosx = 5 6. Solve for Continued on next slide

19 7. Find the exact value of sin45 + sin135 + sin225
8. Show that Show that sin(x+30) – cos(x+60) = 3sinx 10. Show that sin(x+60) – sin(x+120) = sinx 11. Prove that 12. Prove that (sinx + cosx)2 = 1 + sin2x 13. Prove that sin3xcosx + cos3xsinx = sin2x 14. By writing 3x as 2x + x show that sin3x = 3sinx – 4sin3x cos3x = 4cos3x – 3cosx Continued on next slide

20 Prove that (cosx + cosy)2 + (sinx + siny)2 = 2[1+cos(x+y)]
15. Using the fact that , show that Prove that (cosx + cosy)2 + (sinx + siny)2 = 2[1+cos(x+y)] 17. Work out the exact values of a) cos330 b) sin210 c) sin135 19. If sinx= and x is acute, find the exact values of a) sin2x b) cos2x c) sin4x 1 2 3 y x 20. Use the formula for sin (x+y) to show that x+y = 45. Continued on next slide

21 Find the exact value of sin (x+y).
21. Use the formula for cos (x+y) to show that cos (x+y) = 2 3 y x 22. If sin A = , sin B= , and A is obtuse and B is acute, find the exact values of a) sin2A b) cos(A-B) 23. Solve the equation sinxcos33 + cosxsin33 = 0.9 Simplify cos225 – sin225 25 Solve the equations a) 4sin2x = 5sinx b) cos2x + 6cosx + 5 = 0 The diagram shows two right angled triangles. Find the exact value of sin (x+y). 12 13 4


Download ppt "Compound Angles Higher Maths."

Similar presentations


Ads by Google