Download presentation
Presentation is loading. Please wait.
Published byLeslie Mills Modified over 9 years ago
1
April 2009 纪光 - 北京 景山学校 Integration by parts – p.1 How to integrate some special products of two functions
2
1. Not all functions can be integrated by using simple derivative formulas backwards … 2. Some functions look like simple products but cannot be integrated directly. Ex. f(x) = x.sin x but … u’.v’≠ (u.v)’ So what ?!? April 2009 纪光 - 北京 景山学校 2
3
April 2009 纪光 - 北京 景山学校 Integration by parts – p.3 Reminder 1 Derivative of composite functions if g(x) = f[u(x)] and u and f have derivatives, then g’(x) = f’[u(x)]. u’(x) hense
4
April 2009 纪光 - 北京 景山学校 Integration by parts – p.4 Examples of integrals products of composite functions
5
April 2009 纪光 - 北京 景山学校 Integration by parts – p.5 Formulas of integrals of products made of composite functions
6
April 2009 纪光 - 北京 景山学校 Integration by parts – p.6 Reminder 2 Derivative of the Product of 2 functions If u and v have derivatives u’ and v’, then (u.v)’ = u’.v + u.v’ u.v’ = (u.v)’ - u’.v hence by integration of both sides
7
April 2009 纪光 - 北京 景山学校 Integration by parts – p.7 Example 1 u = 1 st part (to derive) u = 1 st part (to derive) v’ = 2 nd part (to integrate) u’ =(x) ’ = 1 u = x sin x = (- cos x ) ’ v’ = sin x u’v = 1.(- cos x) v = - cos x
8
April 2009 纪光 - 北京 景山学校 Integration by parts – p.8 Example 1 u = x u’ = 1 v’ = sin x v = - cos x
9
April 2009 纪光 - 北京 景山学校 Integration by parts – p.9 Example 2 1 st part (to derive) 1 st part (to derive) 2 nd part (to integrate) u’ =(x 2 ) ’ = 2 x u = x 2 cos x = (sin x ) ’ v’ = cos x u’v = 2 x.sin x v = sin x
10
April 2009 纪光 - 北京 景山学校 Integration by parts – p.10 Example 2 u = x 2 u’ = 2x v’ = cos x v = sin x
11
April 2009 纪光 - 北京 景山学校 Integration by parts – p.11 Example 3 1 st part (to derive) 1 st part (to derive) 2 nd part (to integrate) u’ =(ln x) ’ = u = ln x u’v = x = =>v =. v’ = x
12
April 2009 纪光 - 北京 景山学校 Integration by parts – p.12 Example 3 u = ln x u’ = v’ = x v =
13
April 2009 纪光 - 北京 景山学校 Integration by parts – p.13 Example 4 1 st part (to derive) 1 st part (to derive) 2 nd part (to integrate) u’ =(ln x) ’ = u = ln x 1 = (x)’=> v = x v’ = 1 u’v = 1
14
April 2009 纪光 - 北京 景山学校 Integration by parts – p.14 Example 4 u = ln x u’ = v’ = 1 v = x
15
April 2009 纪光 - 北京 景山学校 Integration by parts – p.15 Example 5 1 st part (to derive) 1 st part (to derive) 2 nd part (to integrate) u’ =(ln x) ’ = u = ln x ln x = (x ln x – x)’ v’ = ln x u’v = ln x - 1 v = x ln x – x
16
April 2009 纪光 - 北京 景山学校 Integration by parts – p.16 Example 5 u = ln x u’ = v’ = ln x v = x. ln x - x
17
April 2009 纪光 - 北京 景山学校 Integration by parts – p.17 Problem I Use the IBP formula to calculate :
18
April 2009 纪光 - 北京 景山学校 Integration by parts – p.18 Problem II Use the IBP formula to calculate :
19
April 2009 纪光 - 北京 景山学校 Integration by parts – p.19 Problem III Use the IBP formula to prove that : Let, for any n > 0 : Then find I 2, I 3, I 4
20
April 2009 纪光 - 北京 景山学校 Integration by parts – p.20 祝好云 谢谢 再见
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.