Presentation is loading. Please wait.

Presentation is loading. Please wait.

Institute for Experimental Mathematics Ellernstrasse 29 45326 Essen - Germany DATA COMMUNICATION 2-dimensional transmission A.J. Han Vinck May 1, 2003.

Similar presentations


Presentation on theme: "Institute for Experimental Mathematics Ellernstrasse 29 45326 Essen - Germany DATA COMMUNICATION 2-dimensional transmission A.J. Han Vinck May 1, 2003."— Presentation transcript:

1 Institute for Experimental Mathematics Ellernstrasse 29 45326 Essen - Germany DATA COMMUNICATION 2-dimensional transmission A.J. Han Vinck May 1, 2003

2 University Duisburg-Essen digital communications group 2 Content we describe  orthogonal signaling  2-dimensional transmission model

3 University Duisburg-Essen digital communications group 3 „orthogonal“ binary signaling 2 signals S 1 (t) S 2 (t) in time T Example: Property:orthogonal energy E TT

4 University Duisburg-Essen digital communications group 4 Quadrature Amplitude Modulation: QAM S(t) 1 1 00 0 1

5 University Duisburg-Essen digital communications group 5 QAM receiver +/- 1/0 +/- 1/0 r(t) r(t) = S(t) + n(t) Note: sin(x)sin(x) = ½ (1 – cos (2x) ) sin(x)cos(x) = ½ sin (2x)

6 University Duisburg-Essen digital communications group 6 about the noise

7 University Duisburg-Essen digital communications group 7 about the noise Conclusion: n 1 and n 2 are Gaussian Random Variables zero mean uncorrelated (and thus statistically independent (f(x,y) =f(x)f(y) ) with variance  2.

8 University Duisburg-Essen digital communications group 8 Geometric presentation (1)

9 University Duisburg-Essen digital communications group 9 Geometric presentation (2) ML receiver: find maximum p(r|s)  min p(n)  decision regions 11 10 0001

10 University Duisburg-Essen digital communications group 10 performance From Chapter 1: P(error) =

11 University Duisburg-Essen digital communications group 11 extension 4-QAM  2 bits 16-QAM  4 bits/s Channel 1 Channel 2

12 University Duisburg-Essen digital communications group 12 Geometric presentation (2) 11 22 transmitted received noise vector n The noise vector n has length |n| = (  1 2 +  2 2 ) ½ n has a spherically symmetric distribution! equal density

13 University Duisburg-Essen digital communications group 13 Geometric presentation (1) r‘ r d/2 Prob (error) = Prob(length noise vector > d/2)

14 University Duisburg-Essen digital communications group 14 Error probability for coded transmission The error probabiltiy is similar to the 1-dimensional situation: We have to determine the minimum d 2 Euclidean between any two codewords Example: C C‘ d 2 Euclidean =

15 University Duisburg-Essen digital communications group 15 Error probability The two-code word error probability is then given by:

16 University Duisburg-Essen digital communications group 16 modulation schemes On-offFSK 8-PSK  3 bits/s 16-QAM  4 bits/s 4-QAM  2 bits 1 bit/symbol

17 University Duisburg-Essen digital communications group 17 transmitted symbol energy energy: per information bit must be the same FSK

18 University Duisburg-Essen digital communications group 18 performance From Chapter 1: P(error) = d/2 FSK

19 University Duisburg-Essen digital communications group 19 Coding with same symbol speed In k symbol transmissions, we transmit k information bits. We use a rate ½ code In k symbol transmissions, we transmit k bits ML receiver:

20 University Duisburg-Essen digital communications group 20 Famous Ungerböck coding In k symbol transmissions transmit We can transmit 2k information bits and k redundant digits In k symbol transmissions transmit 2k digits Hence, we can use a code with rate 2/3 with the same energy per info bit!

21 University Duisburg-Essen digital communications group 21 modulator info encoder cici c i  {000,001,010,...111} Signal mapper 2323

22 University Duisburg-Essen digital communications group 22 example transmit or Parity even Parity odd Decoder: 1) first detect whether the parity is odd or even 2) do ML decoding given the parity from 1) Homework: estimate the coding gain 00 11 0110 00 11 0001 10 00 1011 01 10

23 University Duisburg-Essen digital communications group 23 Example: Frequency Shift Keying-FSK Transmit:s(1):= s(0):= Note: FSK

24 University Duisburg-Essen digital communications group 24 Modulator/demodulator S(t) m m r(t) m Select largest demodulator modulator

25 University Duisburg-Essen digital communications group 25 Ex: Binary Phase Shift Keying-BPSK Transmit:s(1):= s(0):=  m  > or < 0? m‘

26 University Duisburg-Essen digital communications group 26 On-off BFSK BPSK Modulation formats

27 University Duisburg-Essen digital communications group 27 10 -1 10 -2 10 -3 10 -4 10 -5 10 -6 10 -7 On-off BPSK QPSK Eb/N0 dB Error rate PERFORMANCE 5 10 15


Download ppt "Institute for Experimental Mathematics Ellernstrasse 29 45326 Essen - Germany DATA COMMUNICATION 2-dimensional transmission A.J. Han Vinck May 1, 2003."

Similar presentations


Ads by Google