Download presentation
1
Trigonometric Functions
Sine and Cosine Functions
2
f(x) = sin x and f(x) = cos x
3
f(x) = sin x and f(x) = cos x
4
f(x) = sin x & two important ideas
Period Amplitude Amplitude Period Period means how many degrees in one cycle. Amplitude means the distance from the centre to the maximum or minimum, OR (max + min) ÷ 2
5
f(x) = sin x Period = 360º Amplitude = 1 Period
6
Now we will investigate
f(x) = A sin Bx + C How do A, B and C affect the shape of the graph? Note: It is exactly the same for sine and cosine, so we will stick just to sine for the start.
7
f(x) = sin x & f(x) = sin x + 3
8
f(x) = sin x + 3 & f(x) = sin x – 2
So C moves the curve up and down
9
f(x) = sin x & f(x) = sin 2x Period = 180º
10
f(x) = sin x & f(x) = sin 3x So B changes the period;
= 120º So B changes the period; the period of the function is (360º ÷ B)
11
f(x) = sin x & f(x) = 2 sin x Amplitude = 2
12
f(x) = sin x & f(x) = 4 sin x Amplitude = 4
13
f(x) = sin x & f(x) = -1 sin x
Amplitude = 1
14
f(x) = sin x & f(x) = -3 sin x
Amplitude = 3
15
f(x) = sin x & f(x) = A sin x
The A gives the amplitude of the function. A negative value means the graph goes down – up, not up – down.
16
f(x) = A sin Bx + C A = amplitude B = 360º ÷ period C = vertical shift
Note: It is exactly the same for sine and cosine. The difference is the where it crosses the y-axis.
17
What is the equation of this function?
Amplitude = 2 so, A = 2 so, B = 3 Period = 120º so, C = -1 Vertical shift = -1 f(x) = 2 sin 3x – 1
18
What is the equation of this function?
Amplitude = 4, going down-up so, A = -4 Period = 720º so, B = 0.5 Vertical shift = 1 so, C = 1 f(x) = -4 sin ½x + 1
19
What is the equation of this function?
Amplitude = 2.5 so, A = 2.5 Period = 240º so, B = 1.5 Vertical shift = 2 so, C = 2 f(x) = 2.5 sin 1.5x + 2
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.