Presentation is loading. Please wait.

Presentation is loading. Please wait.

Material Taken From: Mathematics for the international student Mathematical Studies SL Mal Coad, Glen Whiffen, John Owen, Robert Haese, Sandra Haese and.

Similar presentations


Presentation on theme: "Material Taken From: Mathematics for the international student Mathematical Studies SL Mal Coad, Glen Whiffen, John Owen, Robert Haese, Sandra Haese and."— Presentation transcript:

1 Material Taken From: Mathematics for the international student Mathematical Studies SL Mal Coad, Glen Whiffen, John Owen, Robert Haese, Sandra Haese and Mark Bruce Haese and Haese Publications, 2004

2 Introduction to Periodic Motion Ferris Wheel Demonstration – Page 558 of 2nd edition of Haese and Harris textbook. – http://maine.edc.org/file.php/1/AssessmentResources/ FerrisWheelUnitCircle32_L.html http://maine.edc.org/file.php/1/AssessmentResources/ FerrisWheelUnitCircle32_L.html Temperatures – www.bom.gov.au/silo/ www.bom.gov.au/silo/ Tides – Tidesandcurrents.noaa.gov – www.bom.gov.au/oceanography www.bom.gov.au/oceanography Pendulums Section 16EF – Periodic and Sine Functions

3 Vocabulary – Pg 530 Principal Axis – Imaginary line about which the wave oscillates. Maximum Point – Top of crest. Minimum Point – Bottom of trough. Amplitude – Distance between maximum or minimum and the principal axis. Period – Length or time for one complete repetition or cycle.

4 90º270º180º 1 2 -2 360º - 180º -90º Graph Paper - Label -270º-360º

5 xsin x 0° 45° 90° 135° 180° 225° 270° 315° 360° Graph y = sin x period = amplitude = 360  1

6 Graph y = cos x xcos x 0° 45° 90° 135° 180° 225° 270° 315° 360° period = amplitude = 360  1

7 y = cos xy = sin x

8 Sketch y = x 2 and then y = (x + 4) 2 – 2

9 Transforming Graphs Mother Function Relative Function Transformation? y 1 = sin xy 2 = - sin xreflection over x-axis y 1 = sin xy 2 = 4sin xamplitude = 4 y 1 = sin xy 2 = ½sin xamplitude = ½ y 1 = cos xy 2 = 2 + cos xvertical translation 2 units up y 1 = cos xy 2 = -3 + cos xvertical translation 3 units down y 1 = sin xy 2 = sin 2x period = 180  y 1 = sin xy 2 = sin ½x period = 720  DO NOT WRITE THIS DOWN

10 y = a sin bx + c y = a cos bx + c c = vertical translation Summary:

11 Without using technology sketch the graph of: y = 2sinx for 0  ≤ x ≤ 360  Example 1

12 Without using technology sketch the graph of: y = -2sinx for 0  ≤ x ≤ 360  Example 2

13 State the amplitude and period of: y = 3 cos 2x Example 3

14 The diagram below shows the graph of: y = – a sin x° + c, 0 ≤ x ≤ 360. Use the graph to find the values of: (a)c (b)a Example 4

15 The diagram shows the graph of y = sin ax + b. (a)Using the graph, write down the following values: (i) the period (ii)the amplitude (iii) b (b)Calculate the value of a. Example 5

16 Homework Pg 531-532 – 16E – #3,#4 Pg 534-535 – 16F.1 – #1abcd, #3abc, #4ab Pg 535-536 – 16F.2 – #1abcdefgh, #2ade


Download ppt "Material Taken From: Mathematics for the international student Mathematical Studies SL Mal Coad, Glen Whiffen, John Owen, Robert Haese, Sandra Haese and."

Similar presentations


Ads by Google