Download presentation
Presentation is loading. Please wait.
Published byMark Simmons Modified over 9 years ago
1
Material Taken From: Mathematics for the international student Mathematical Studies SL Mal Coad, Glen Whiffen, John Owen, Robert Haese, Sandra Haese and Mark Bruce Haese and Haese Publications, 2004
2
Introduction to Periodic Motion Ferris Wheel Demonstration – Page 558 of 2nd edition of Haese and Harris textbook. – http://maine.edc.org/file.php/1/AssessmentResources/ FerrisWheelUnitCircle32_L.html http://maine.edc.org/file.php/1/AssessmentResources/ FerrisWheelUnitCircle32_L.html Temperatures – www.bom.gov.au/silo/ www.bom.gov.au/silo/ Tides – Tidesandcurrents.noaa.gov – www.bom.gov.au/oceanography www.bom.gov.au/oceanography Pendulums Section 16EF – Periodic and Sine Functions
3
Vocabulary – Pg 530 Principal Axis – Imaginary line about which the wave oscillates. Maximum Point – Top of crest. Minimum Point – Bottom of trough. Amplitude – Distance between maximum or minimum and the principal axis. Period – Length or time for one complete repetition or cycle.
4
90º270º180º 1 2 -2 360º - 180º -90º Graph Paper - Label -270º-360º
5
xsin x 0° 45° 90° 135° 180° 225° 270° 315° 360° Graph y = sin x period = amplitude = 360 1
6
Graph y = cos x xcos x 0° 45° 90° 135° 180° 225° 270° 315° 360° period = amplitude = 360 1
7
y = cos xy = sin x
8
Sketch y = x 2 and then y = (x + 4) 2 – 2
9
Transforming Graphs Mother Function Relative Function Transformation? y 1 = sin xy 2 = - sin xreflection over x-axis y 1 = sin xy 2 = 4sin xamplitude = 4 y 1 = sin xy 2 = ½sin xamplitude = ½ y 1 = cos xy 2 = 2 + cos xvertical translation 2 units up y 1 = cos xy 2 = -3 + cos xvertical translation 3 units down y 1 = sin xy 2 = sin 2x period = 180 y 1 = sin xy 2 = sin ½x period = 720 DO NOT WRITE THIS DOWN
10
y = a sin bx + c y = a cos bx + c c = vertical translation Summary:
11
Without using technology sketch the graph of: y = 2sinx for 0 ≤ x ≤ 360 Example 1
12
Without using technology sketch the graph of: y = -2sinx for 0 ≤ x ≤ 360 Example 2
13
State the amplitude and period of: y = 3 cos 2x Example 3
14
The diagram below shows the graph of: y = – a sin x° + c, 0 ≤ x ≤ 360. Use the graph to find the values of: (a)c (b)a Example 4
15
The diagram shows the graph of y = sin ax + b. (a)Using the graph, write down the following values: (i) the period (ii)the amplitude (iii) b (b)Calculate the value of a. Example 5
16
Homework Pg 531-532 – 16E – #3,#4 Pg 534-535 – 16F.1 – #1abcd, #3abc, #4ab Pg 535-536 – 16F.2 – #1abcdefgh, #2ade
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.