Download presentation
Presentation is loading. Please wait.
Published byRandall Blaze Marshall Modified over 9 years ago
1
CONTENTS Prior knowledge Structure and classification Nomenclature Physical properties Basic properties Nucleophilic properties Amino acids Peptides and proteins AMINES
2
Before you start it would be helpful to… know the functional groups found in organic chemistry know the arrangement of bonds around atoms recall and explain nucleophilic substitution reactions AMINES
3
STRUCTURE & CLASSIFICATION StructureContain the NH 2 group Classification primary (1°) amines secondary (2°) amines tertiary (3°) aminesquarternary (4°) ammonium salts Aliphaticmethylamine, ethylamine, dimethylamine Aromatic NH 2 group is attached directly to the benzene ring (phenylamine) R N : H H R H R R R + R N R R
4
NOMENCLATURE NomenclatureNamed after the groups surrounding the nitrogen + amine C 2 H 5 NH 2 ethylamine (CH 3 ) 2 NHdimethylamine (CH 3 ) 3 Ntrimethylamine C 6 H 5 NH 2 phenylamine (aniline)
5
PREPARATION Amines can be prepared from halogenoalkanes ReagentAqueous, alcoholic ammonia ConditionsReflux in aqueous, alcoholic solution under pressure Product Amine (or its salt due to a reaction with the acid produced) NucleophileAmmonia (NH 3 ) Equation C 2 H 5 Br + NH 3 (aq / alc) ——> C 2 H 5 NH 2 + HBr ( or C 2 H 5 NH 3 + Br¯ )
6
PHYSICAL PROPERTIES The LONE PAIR on the nitrogen atom in 1°, 2° and 3° amines makes them... NUCLEOPHILES - provide a lone pair to attack an electron deficient centre
7
CHEMICAL REACTIONS - WEAK BASES WaterAmines which dissolve in water produce weak alkaline solutions CH 3 NH 2 (g) + H 2 O(l) CH 3 NH 3 + (aq) + OH¯(aq) AcidsAmines react with acids to produce salts. C 6 H 5 NH 2 (l) + HCl(aq) ——> C 6 H 5 NH 3 + Cl¯(aq) phenylammonium chloride This reaction allows one to dissolve an amine in water as its salt. Addition of aqueous sodium hydroxide liberates the free base from its salt C 6 H 5 NH 3 + Cl¯(aq) + NaOH(aq) ——> C 6 H 5 NH 2 (l) + NaCl(aq) + H 2 O(l)
8
AMINO ACIDS Structure Amino acids contain 2 functional groups amine NH 2 carboxyl COOH They all have a similar structure - the identity of R 1 and R 2 vary H 2 N C COOH H H CH 3 H H 2 N C COOH R2R2 R 1
9
AMINO ACIDS – OPTICAL ISOMERISM Amino acids can exist as optical isomers If they have different R 1 and R 2 groups Optical isomers exist when a molecule Contains an asymmetric carbon atom Asymmetric carbon atoms have four different atoms or groups attached Two isomers are formed - one rotates plane polarised light to the left, one rotates it to the right Glycine doesn’t exhibit optical isomerism as there are two H attached to the C atom H 2 N C COOH CH 3 H H 2 N C COOH H H GLYCINE 2-aminopropanoic acid
10
AMINO ACIDS - ZWITTERIONS Zwitterion a dipolar ion has a plus and a minus charge in its structure (see below) amino acids exist as zwitterions give increased inter-molecular forces melting and boiling points are higher H 3 N + C COO¯ R2R2 R1R1
11
amino acids possess acidic and basic properties this is due to the two functional groups (see above) COOH gives acidic properties NH 2 gives basic properties they form salts when treated with acids or alkalis. H 2 N C COOH R2R2 R1R1 AMINO ACIDS - ACID-BASE PROPERTIES
12
Acidic properties: with H + HOOCCH 2 NH 2 + H + ——> HOOCCH 2 NH 3 + with HClHOOCCH 2 NH 2 + HCl ——> HOOCCH 2 NH 3 + Cl¯ Basic properties: with OH¯HOOCCH 2 NH 2 + OH¯ ——> ¯OOCCH 2 NH 2 + H 2 O with NaOH HOOCCH 2 NH 2 + NaOH ——> Na+ ¯OOCCH 2 NH 2 + H 2 O
13
PEPTIDES - FORMATION & STRUCTURE Amino acids can join together to form peptides via an amide or peptide link 2 amino acids joineddipeptide 3 amino acids joinedtripeptide many amino acids joinedpolypeptide a dipeptide
14
PEPTIDES - HYDROLYSIS Peptides are broken down into their constituent amino acids by hydrolysis attack takes place at the slightly positive C of the C=O the C-N bond is broken hydrolysis with water is very slow hydrolysis in alkaline/acid conditions is quicker hydrolysis in acid/alkaline conditions (e.g. NaOH) will produce salts with HClNH 2 becomes NH 3 + Cl¯ H + NH 2 becomes NH 3 + NaOHCOOHbecomes COO¯ Na + OH¯COOHbecomes COO¯
15
PEPTIDES - HYDROLYSIS Peptides are broken down into their constituent amino acids by hydrolysis H 2 N C CO CH 3 H NH C CO H H NH C COOH CH 3 Which amino acids are formed?
16
PEPTIDES - HYDROLYSIS Peptides are broken down into their constituent amino acids by hydrolysis H 2 N C CO CH 3 H NH C CO H H NH C COOH CH 3 H H 2 N C COOH H H CH 3 H 2 N C COOH ++
17
H 2 N C CO CH 3 H NH C CO H H NH C COOH H CH 3 PEPTIDES - HYDROLYSIS Peptides are broken down into their constituent amino acids by hydrolysis Which amino acids are formed?
18
H 2 N C CO CH 3 H NH C CO H H NH C COOH H CH 3 PEPTIDES - HYDROLYSIS Peptides are broken down into their constituent amino acids by hydrolysis CH 3 H H 2 N C COOH H H 2 x +
19
PROTEINS are polypeptides with high molecular masses chains can be lined up with each other the C=O and N-H bonds are polar due to a difference in electronegativity hydrogen bonding exists between chains dotted lines ---------- represent hydrogen bonding
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.