Presentation is loading. Please wait.

Presentation is loading. Please wait.

Transportation Method Lecture 20 By Dr. Arshad Zaheer.

Similar presentations


Presentation on theme: "Transportation Method Lecture 20 By Dr. Arshad Zaheer."— Presentation transcript:

1 Transportation Method Lecture 20 By Dr. Arshad Zaheer

2 RECAP  Transportation model (Minimization)  Illustration (Demand < Supply)  Optimal Solution  Modi Method

3 Maximization Total Demand exceeds Total Capacity (Supply)

4 Maximization Maximization problem may be solved by the use of following method Multiply the given pay off matrix of profits or gain by -1. Then use the transportation technique for minimization to obtain optimal solution. To calculate the total profit or gain multiply the total cost by -1

5 Illustration Maximize the profit for this problem Sources D1D1 D2D2 D3D3 Capacity S1S1 10151215 S2S2 98325 S3S3 1282025 Demand302030 65 80

6 Introduce the fictitious supply to balance at zero profit Sources D1D1 D2D2 D3D3 Capacity S1S1 10151215 S2S2 98325 S3S3 1282025 SfSf 00015 Demand30203080

7 Sources DestinationCapacity D1D2D3 S1 10 Xij 15 Xij 12 Xij 15 S2 9 Xij 8 Xij 3 Xij 25 S3 12 Xij 8 Xij 20 Xij 25 SfSf 0 Xij 0 Xij 0 Xij 15 Demand 302030 80

8 Initial Solution by North West Corner Rule

9 Sources DestinationCapacity D1D2D3 S1 10 15 0 12 0 15 S2 9 15 8 10 3030 25 S3 12 0 8 10 20 15 25 SfSf 0000 0000 0 15 Demand 30203080

10 For maximization we multiply all the profits or gains by -1.

11 Sources DestinationCapacity D1D2D3 S1 -10 15 -15 0 -12 0 15 S2 -9 15 -8 10 -30-30 25 S3 -12 0 -8 10 -20 15 25 SfSf 0000 0000 0 15 Demand 30203080

12 Total Profit Total Cost =15*-10 + 15*-9 + 10*-8 + 10*-8 + 15* -20 = -745 Total Profit=-1*- 745 = 745

13 No of Basic Variables= m+n-1 = 4+3-1 =6 m= No of sources n= No of destinations

14 Sources DestinationCapacity D1D2D3 S1 -10 15 -15 0 -12 0 15 U1= S2 -9 15 -8 10 -30-30 25 U2= S3 -12 0 -8 10 -20 15 25 U3= SfSf 0000 0000 0 15 U4= Demand 30 V1= 20 V2= 30 V3= 80 For calculating shadow cost we need to find the values of U and V variables

15 Equations U1+V1=-10let U2=0 U2+V1=-9U1=-1V1=-9 U2+V2=-8U2=OV2=-8 U3+V2=-8U3=0V3=-20 U3+V3=-20U4=20 U4+V3=0

16 Sources DestinationCapacity D1D2D3 S1 -10 15 -15 0 -9 -12 0 15 U1=-1 S2 -9 15 -8 10 -30-30 25 U2=0 S3 -12 0 -8 10 -20 15 25 U3=0 SfSf 0000 0000 0 15 U4=20 Demand 30 V1=-9 20 V2=-8 30 V3=-20 80 Shadow cost of S1, D3 Vij = (Ui + Vj) –Cij V13 = (U1 + V3) –C13 =(-1-20)-12 =-9 We can calculate all the shadow cost in the same way for others

17 Sources DestinationCapacity D1D2D3 S1 -10 15 6 -15 0 -9 -12 0 15 U1=-1 S2 -9 15 -8 10 -17 -3 0 25 U2=0 S3 3 -12 0 -8 10 -20 15 25 U3=0 SfSf 11 0 0 12 0 0 15 U4=20 Demand 30 V1=-9 20 V2=-8 30 V3=-20 80 We add θ in maximum positive shadow cost to proceed further because our optimal condition is not yet satisfied

18 Sources DestinationCapacity D1D2D3 S1 -10 15 6 -15 0 -9 -12 0 15 U1=-1 S2 -9 15 -8 10 -17 -3 0 25 U2=0 S3 3 -12 0 -8 10-θ -20 15+θ 25 U3=0 SfSf 11 0 0 12 0 0+θ 0 15-θ 15 U4=20 Demand 30 V1=-9 20 V2=-8 30 V3=-20 80

19 Maximum θ = Min (10,15) ` = 10

20 Sources DestinationCapacity D1D2D3 S1 -10 15 -15 0 -12 0 15 U1= S2 -9 15 -8 10 -3 0 25 U2= S3 -12 0 -80-80 -20 25 U3= SfSf 0 10 0505 15 U4= Demand 30 V1= 20 V2= 30 V3= 80

21 Total Cost=15*-10 +15*-9 + 10*-8 + 25*-20 =-865 Total Profit/Gain = -1 * -865 =865

22 Equations U1+V1=-10let U2=0 U2+V1=-9U1=-1V1=-9 U2+V2=-8U2= 0V2=-8 U3+V3=-20U3=-12V3=-8 U4+V2=0U4=8 U4+V3=0

23 Sources DestinationCapacity D1D2D3 S1 -10 15 -15 0 -12 0 15 U1=-1 S2 -9 15 -8 10 -3 0 25 U2=0 S3 -12 0 -80-80 -20 25 U3=-12 SfSf 0 10 0505 15 U4=8 Demand 30 V1=-9 20 V2=-8 30 V3=-8 80 Now we can calculate the shadow costs for all cells

24 Sources DestinationCapacity D1D2D3 S1 -10 15 6 -15 0 3 -12 0 15 U1=-1 S2 -9 15 -8 10 -5 -3 0 25 U2=0 S3 -9 -12 0 -12 -8 0 -20 25 U3=-12 SfSf -1 0 0 10 0505 15 U4=8 Demand 30 V1=-9 20 V2=-8 30 V3=-8 80 shadow costs are still positive so we use θ to proceed further

25 Sources DestinationCapacity D1D2D3 S1 -10 15-θ 6 15 0+θ 3 -12 0 15 U1=-1 S2 -9 15+θ -8 10-θ -5 -3 0 25 U2=0 S3 -9 -12 0 -12 -8 0 -20 25 U3=-12 SfSf -1 0 0 10 0505 15 U4=8 Demand 30 V1=-9 20 V2=-8 30 V3=-8 80

26 Maximum θ = Min (10, 15) ` = 10

27 Sources DestinationCapacity D1D2D3 S1 -10 5 -15 10 -12 0 15 U1= S2 -9 25 -80-80 -3 0 25 U2= S3 -12 0 -8 0 -20 25 U3= SfSf 0 10 0505 15 U4= Demand 30 V1= 20 V2= 30 V3= 80

28 Total Cost = 5*-10 + 10*-15 + 25*-9 + 25*-20 =- 925 Total Gain/Profit= = -1 * -925 = 925

29 Equations U1+V1=-10let U2=0 U1+V2=-15U1=-1V1=-9 U2+V1=-9U2= 0V2=-14 U3+V3=-20U3=-6V3=-14 U4+V2=0U4=14 U4+V3=0

30 Sources DestinationCapacity D1D2D3 S1 -10 5 -15 10 -12 0 15 U1=-1 S2 -9 25 -80-80 -3 0 25 U2=0 S3 -12 0 -8 0 -20 25 U3=-6 SfSf 0 10 0505 15 U4=14 Demand 30 V1=-9 20 V2=-14 30 V3=-14 80 Now the shadow cost for each cell can be calculated easily

31 Sources DestinationCapacity D1D2D3 S1 -10 5 -15 10 -3 -12 0 15 U1=-1 S2 -9 25 -6 -8 0 -11 -3 0 25 U2=0 S3 -3 -12 0 -12 -8 0 -20 25 U3=-6 SfSf 5 0 0 10 0505 15 U4=14 Demand 30 V1=-9 20 V2=-14 30 V3=-14 80 Criteria for optimality is not satisfied so we will proceed further with use of θ

32 Sources DestinationCapacity D1D2D3 S1 -10 5-θ -15 10+θ -3 -12 0 15 U1=-1 S2 -9 25 -6 -8 0 -11 -3 0 25 U2=0 S3 -3 -12 0 -12 -8 0 -20 25 U3=-6 SfSf 5 0 0+θ 0 10-θ 0505 15 U4=14 Demand 30 V1=-9 20 V2=-14 30 V3=-14 80

33 Maximum θ = Min (5, 10) ` = 5

34 Sources DestinationCapacity D1D2D3 S1 -10 0 -15 15 -12 0 15 U1= S2 -9 25 -8 0 -3 0 25 U2= S3 -12 0 -8 0 -20 25 U3= SfSf 0 5 0 5 0505 15 U4= Demand 30 V1= 20 V2= 30 V3= 80

35 Total Cost =15*-15 + 25*-9 + 25*-20 =-950 Total Profit/Gain= =-1 * - 950 =950

36 Equations U1+V2=-15let U2=0 U2+V1=-9U1=-6V1=-9 U3+V3=-20U2= 0V2=-9 U4+V1=0U3=-11V3=-9 U4+V2=0U4=9 U4+V3=0

37 Sources DestinationCapacity D1D2D3 S1 -10 0 -15 15 -12 0 15 U1=-6 S2 -9 25 -8 0 -3 0 25 U2=0 S3 -12 0 -8 0 -20 25 U3=-11 SfSf 0 5 0 5 0505 15 U4=9 Demand 30 V1=-9 20 V2=-9 30 V3=-9 80 Now calculate the shadow costs for non basic cells

38 Sources DestinationCapacity D1D2D3 S1 -5 -10 0 15 -3 -12 0 15 U1=-6 S2 -9 25 -1 -8 0 -6 -3 0 25 U2=0 S3 -8 -12 0 -12 -8 0 -20 25 U3=-11 SfSf 0 5 0 5 0505 15 U4=9 Demand 30 V1=-9 20 V2=-9 30 V3=-9 80 Criteria for optimality has been satisfied as all the shadow costs are non- positive

39 Optimal Distribution S1 ─ ─ ─ ─ > D2 = 15 S2 ─ ─ ─ ─ > D1 = 25 S3 ─ ─ ─ ─ > D3 = 25 Sf ─ ─ ─ ─ > D1 = 5 Sf ─ ─ ─ ─ > D2 = 5 Sf ─ ─ ─ ─ > D3 = 5 Total = 80 Total Gain = 950

40


Download ppt "Transportation Method Lecture 20 By Dr. Arshad Zaheer."

Similar presentations


Ads by Google