Download presentation
1
Search
2
Outline Problem space/ State space Exhaustive search Backtracking
Depth-first search Breadth-first search Backtracking Branch-and-bound Jaruloj Chongstitvatana Search
3
Problem Space or State Space
4
Problem Space General problem statement
Given a problem instance P, find answer A=(a1, a2, …, an) such that the criteria C(A, P) is satisfied. Problem space of P is the set of all possible answers A. Jaruloj Chongstitvatana Search
5
Example: Shortest path
Given a graph G=(V,E), and nodes u and v, find the shortest path between u and v. General problem statement Given a graph G and nodes u and v, find the path (u, n1, n2, …, nk, v), and (u, n1, n2,…, nk, v) is the shortest path between u and v. Problem space Set of all possible path between u and v. {(u, n1, n2, …, nk, v)| ni is in V, for 1ik}. Jaruloj Chongstitvatana Search
6
Example: 0/1 Knapsack Given a set S of n objects, where the object i has value vi and weight wi , and a knapsack with weight capacity C, find the maximum of value of objects in S which can be put in the knapsack. General problem statement Given vi and wi , for 1 i n , find the set K such that for each i in K, 1 i n, vi is maximum while wi C. iK iK Problem space Any subset of S. Jaruloj Chongstitvatana Search
7
Example: n Queens Given an nxn board, find the n squares in the board to put n queens so that no pair can attack. General problem statement Find (p1, p2, …, pn) where pi = (xi, yi) is a square on the board, where there is no pair (xi, yi) and (xj, yj) such that xi = xj or yi = yj. Problem space A set of any n positions on the board. Jaruloj Chongstitvatana Search
8
Exhaustive Search
9
Exhaustive Search Generate every possible answer
Test each answer with the constraint to find the correct answer Inefficient because the number of answers in the problem space can be exponential. Examples: Shortest path n! paths to be considered, where n is the number of nodes. 0/1 Knapsack 2n selections, where n is the number of objects. n Queens n2!/n! (n2-n)! Jaruloj Chongstitvatana Search
10
State-Space Tree Let (a1, a2, …, an) be a possible answer.
Suppose ai is either 0 or 1, for 1 i nใ (?, …, ?) (0, ?, …, ?) (1, ?, …, ?) (0, 0, ?, …, ?) (0, 1, ?, …, ?) (1, 0,?, …, ?) (1, 1, ?, …, ?) (0,0,0, …, ?) (0,0,1, …, ?) (0,1,0, …, ?) (0,1,1, …, ?) Jaruloj Chongstitvatana Search
11
State-Space Tree: Shortest Path
8 (1) 3 5 2 5 2 (1,2) (1,3) 1 1 -6 -1 (1,2,3) (1,2,4) (1,3,4) (1,3,5) 2 2 4 (1,2,3,4) (1,2,3,5) (1,2,4,5) (1,3,4,5) (1,2,3,4,5) Jaruloj Chongstitvatana Search
12
Generating Possible Paths
Let {1,2,3, …, n} be a set of nodes and E[i][j] is the weight of the edge between node i and j. path(p) last = last node in the path p for next = 1 to n do np = p if next is not in np and E[last][next] != 0 then np = np || next path(np) else return Jaruloj Chongstitvatana Search
13
State-Space Tree : 0/1 Knapsack
Given a set of objects o1, …, o5. { } {1} {2} {3} {4} {5} {1,2} {1,3} {1,4} {1,5} {1,2,3} {1,2,4} {1,2,5} {1,3,4} {1,3,5} {1,4,5} {1,2,3,4} {1,2,3,5} {1,2,4,5} {1,3,4, 5} {1,2,3,4,5} Jaruloj Chongstitvatana Search
14
State-Space Tree : n Queen
Jaruloj Chongstitvatana Search
15
Depth-first Search Traverse the tree from root until a leaf is reached. Then, traverse back up to visited the next unvisited node. depthFirst(v) visited[v] = 1 for each node k adjacent to v do if not visited[k] then depthFirst(k) Jaruloj Chongstitvatana Search
16
0/1 Knapsack: Depth-first Search
Global: maxV=0 maxSack={} DFknapsack(sack, unchosen) for each object p in unchosen do unchosen=unchosen-{p} sack=sack U {p} val=evaluate(sack) if unchosen is empty ► A leaf is reached. then maxV=max(maxV, val) if maxV=val then maxSack=sack return else DFknapsack(sack, unchosen) Jaruloj Chongstitvatana Search
17
Breadth-first Search Traverse the tree from root until the nodes of the same depth are all visited. Then, visited the node in the next level. breadthFirst(v) Q = empty queue enqueue(Q, v) visited[v] = 1 while not empty (Q) do u = dequeue(Q) for each node k adjacent to u do if not visited[k] then visited[k] = true enqueue(Q, k) Jaruloj Chongstitvatana Search
18
0/1 Knapsack: Breadth-first Search
BFknapsack Q = empty queue maxV=0 sack = { } unchosen = set of all objects enqueue(Q, <sack, unchosen>) while not empty (Q) do <sack, unchosen> = dequeue(Q) if unchosen is not empty then for each object p in unchosen do enqueue(Q,<sackU{p}, unchosen-{p}>) else maxV = max(maxV, evaluate(sack)) if maxV=evaluate(sack) then maxSack = sack Jaruloj Chongstitvatana Search
19
Backtracking
20
Backtracking Reduce the search by cutting down some branches in the tree Jaruloj Chongstitvatana Search
21
0/1 Knapsack: Backtracking
{} 0,0 Sack Current weight, current value Node {1} 2,5 {2} 1,4 {3} 3,8 {4} 2,7 {1,2} 3,9 {1,3} 5,13 {1,4} 4,12 {2,3} 4,12 {2,4} 3,11 {3,4} 5,15 object weight value 1 2 5 4 3 8 7 {2,3,4} 6,19 {1,2,3} 6, 17 {1,2,4} 5, 16 Capacity = 5 Jaruloj Chongstitvatana Search
22
0/1 Knapsack: Backtracking
BTknapsack(sack, unchosen) for each object p in unchosen do unchosen=unchosen-{p} if p can be put in sack then sack = sack U {p} ► Backtracking occurs when p cannot be put in sack. val=evaluate(sack) if unchosen is empty ► A leaf is reached. then maxV=max(maxV, val) maxSack=sack return else BTknapsack(sack, unchosen) Jaruloj Chongstitvatana Search
23
Branch-and-Bound
24
Branch-and-bound Use for optimization problems
An optimal solution is a feasible solution with the optimal value of the objective function. Search in state-space trees can be pruned by using bound. Jaruloj Chongstitvatana Search
25
State-Space Tree with Bound
Jaruloj Chongstitvatana Search
26
Branch and Bound From a node N:
If the bound of N is not better than the current overall bound, terminate the search from N. Otherwise, If N is a leaf node If its bound is better than the current overall bound, update the overall bound and terminate the search from N. Otherwise, terminate the search from N. Otherwise, search each child of N. Jaruloj Chongstitvatana Search
27
0/1 Knapsack: Branch-and-Bound
Global: OvBound=0 BBknapsack(sack, unchosen) if bound(sack, unchosen)>OvBound ► Estimated bound can be better than the overall bound. then for each object p in unchosen do unchosen=unchosen-{p} if p can be put in sack then sack = sack U {p} ► Backtracking occurs when p cannot be put in sack. val=evaluate(sack) if unchosen is empty ► A leaf is reached. then maxV = max(maxV, val) maxSack = sack OvBound = max(evaluate(sack), OvBound) return else ► A leaf is not reached. Jaruloj Chongstitvatana Search
28
0/1 Knapsack: Estimated bound
Current value available space * best ratio value:space of unchosen objects Jaruloj Chongstitvatana Search
29
0/1 Knapsack: Branch-and-bound
{} 20 0,0 Sack estimated bound Current weight, current value Node {1}17 2,5 {2}18 1,4 {3}16 3,8 {4}19 2,7 {1,2}16 3,9 {1,3} 13 5,13 {2,3}15.5 4,12 {2,4}16.3 3,11 {3,4}15 5,15 object weight value ratio 1 2 5 2.5 4 3 8 2.67 7 3.5 {1,2,4} 16 5, 16 Overall bound 16 Capacity = 5 Jaruloj Chongstitvatana Search
30
Jaruloj Chongstitvatana
Search
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.