Download presentation
Presentation is loading. Please wait.
Published byMerry Stephens Modified over 9 years ago
1
Effective Inelastic Response of Polymer Composites by Direct Numerical Simulations A. Amine Benzerga Aerospace Engineering, Texas A&M University With: R. Talreja, K. Chowdhury, X. Poulain, A. DeCastro and B. Burgess
2
Background & Motivation 2 Example: Composite blade containment casing for jet engines Wide range of temperatures (service conditions) Wide range of strain-rates (design for impact applications) Ideal for implementing a multiscale modeling strategy: (i)the material is heterogeneous at various scales; (ii)the physical processes of damage occur at various scales Li et al. (JAE, July 2009) Goal: Develop a strategy aimed at predicting durability of structural components Basic ingredient: Reliable physics-based inelastic constitutive models Model ValidationDamage ProgressionNumerical Homogenization Material Parameter Identification Polymer ModelExperimentsBackground/ Motivation July 23 rd 2009
3
Background & Motivation 3 Model ValidationDamage ProgressionNumerical Homogenization Material Parameter Identification Polymer ModelExperimentsBackground/ Motivation July 23 rd 2009
4
Typical Response of a Polymer 4 elastic hardening softening rehardening T=298K Compression Epon 862 Littel et al (2008) Model ValidationDamage ProgressionNumerical Homogenization Material Parameter Identification Polymer ModelExperimentsBackground/ Motivation July 23 rd 2009
5
Temperature & Rate sensitivity 5 Effect of Temperature (Epon 862) The behavior of polymers is temperature and strain-rate dependent Model ValidationDamage ProgressionNumerical Homogenization Material Parameter Identification Polymer ModelExperimentsBackground/ Motivation July 23 rd 2009 Tension 298K 323K 353K Littel et al (2008) Compression Littel et al (2008) Strain-rate effects (Epon 862)
6
Specification of plastic flow: Assume additive decompositionwhereand Pointwise tensor of elastic moduliJaumann rate of Cauchy stress Effective strain rate: (define direction of plastic flow) Flow rule: Effective stress:Deviatoric part of driving stress: Back stress tensor Strain rate effects Material parameters Describe pressure sensitivity Internal variable 6 Polymer model July 2009 Model ValidationDamage ProgressionNumerical Homogenization Material Parameter Identification Polymer ModelExperimentsBackground/ Motivation Modified Macromolecular Model (Chowdhury et al. CMAME 2008)
7
7 Nota Bene: Original law (Boyce et al. 1988 ) Evolution of back stress: Evolution of athermal shear strength s : Polymer Model July 2009 Model ValidationDamage ProgressionNumerical Homogenization Material Parameter Identification Polymer ModelExperimentsBackground/ Motivation
8
Material parameter identification 8 Material parameters : Elastic constants : Temperature sensitivity Strain-rate sensitivity Pressure sensitivity Small strain softening Large strain hardening, cyclic response Pre-peak hardening Related to inelasticity : E, s0s0 s1s1 s2s2 f h0h0 CRCR N A, h3h3 Littell et al. (2008) Reverse flow stress Forward flow stress Model ValidationDamage ProgressionNumerical Homogenization Material Parameter Identification Polymer ModelExperimentsBackground/ Motivation July 18 th 2009
9
9 1- Uniaxial tension, compression and torsion tests at fixed strain-rate : 2- Tensile data at various temperatures and strain-rates : 3- s 0 is determined from : 4- s 1 is determined from : (at lowest temperature at given strain-rate) 5- s 2 is determined from : (at lowest temperature at given strain-rate) 6- Large strain compressive response and/or unloading response at fixed strain-rate and temperature : 7- Specific shape of stress-strain curve around peak : Material parameter identification Model ValidationDamage ProgressionNumerical Homogenization Material Parameter Identification Polymer ModelExperimentsBackground/ Motivation July 18 th 2009
10
10 Model validation Tension at T=323K 10 -1 /s 10 -3 /s 620/s Model ValidationDamage ProgressionNumerical Homogenization Material Parameter Identification Polymer ModelExperimentsBackground/ Motivation July 18 th 2009
11
11 Model validation Tension at 10 -1 /s T=298K T=323K T=353K Model ValidationDamage ProgressionNumerical Homogenization Material Parameter Identification Polymer ModelExperimentsBackground/ Motivation July 18 th 2009
12
12 Model validation Compression at T=298K 700/s 10 -1 /s 10 -3 /s 10 -5 /s 1600/s Model ValidationDamage ProgressionNumerical Homogenization Material Parameter Identification Polymer ModelExperimentsBackground/ Motivation July 18 th 2009
13
Numerical Homogenization 13 Principles of Numerical Simulations : Unit cell composed of Epon 862 matrix (not optimized set), interface of fixed thickness and carbon fiber Plane strain conditions Damage not included Objectives : Investigate evolution of mechanical fields (strains, stresses) in unit-cells Relate micro/macroscopic behaviors Input for understanding of onset/propagation of fracture x1x1 x2x2 a b Epon 862 C fiber interface Model ValidationDamage ProgressionNumerical Homogenization Material Parameter Identification Polymer ModelExperimentsBackground/ Motivation July 18 th 2009
14
14 Geometries : Height: b= 100 Cell aspect ratio: A c = 2 Fiber volume ratio: V w =0.1 Fiber aspect ratio: A w =variable Numerical Homogenization Model ValidationDamage ProgressionNumerical Homogenization Material Parameter Identification Polymer ModelExperimentsBackground/ Motivation July 18 th 2009
15
Numerical Homogenization 15 Numerical implementation : Convective representation of finite deformations (Needleman, 1989) Dynamic principle of Virtual Work: FEM : Linear displacement triangular elts arranged in quadrilaterals of 4 crossed triangles. Equations of Motions : They are integrated numerically by Newmark- method (Belytshko,1976) in an explicit FE code. Constitutive updating is based on the rate tangent modulus method of Pierce et al (1984) Kirchhoff stress Green-Lagrange strain Surface traction Model ValidationDamage ProgressionNumerical Homogenization Material Parameter Identification Polymer ModelExperimentsBackground/ Motivation July 18 th 2009
16
16 Calculations at E 22 =0.10: Tension Fiber : AS4 (sim. To T700) E t = 14 GPa t =0.25 Geometries : Height: b= 100 Cell aspect ratio: A c = 2 Fiber volume ratio: V w =0.2 Fiber aspect ratio: A w =1 (cyl.) Dramatic effect of fiber volume ratio on strengthening at all fiber aspect ratios Numerical Homogenization Model ValidationDamage ProgressionNumerical Homogenization Material Parameter Identification Polymer ModelExperimentsBackground/ Motivation July 18 th 2009
17
17 Calculations at E 22 =0.10: Compression Fiber : AS4 (sim. To T700) E t = 14 GPa t =0.25 Geometries : Height: b= 100 Cell aspect ratio: A c = 2 Fiber volume ratio: V w =0.2 Fiber aspect ratio: A w =1 (cyl.) Plastic strains: Localization and maxima : same as in tension Hydrostatic stresses : Building-up in thin ligament between fiber and edge A w =6 : proximity of fiber to top surface where stresses are computed may explain strengthening? Numerical Homogenization Model ValidationDamage ProgressionNumerical Homogenization Material Parameter Identification Polymer ModelExperimentsBackground/ Motivation July 18 th 2009
18
18 Damage Progression Model ValidationDamage ProgressionNumerical Homogenization Material Parameter Identification Polymer ModelExperimentsBackground/ Motivation July 18 th 2009 Objective: Develop an experimentally-valided matrix cracking model for use in mesoscale analyses
19
19 Damage Progression Model ValidationDamage ProgressionNumerical Homogenization Material Parameter Identification Polymer ModelExperimentsBackground/ Motivation July 18 th 2009 Finding: Irrespective of the microscopic damage mechanisms, the fracture locus of the polymer matrix is pressure dependent and is temperature-dependent
20
20 TENSION (PMMA) Benzerga et al. (JAE, 2009) DEBONDING : Asp et al., 1996 Damage Progression Model ValidationDamage ProgressionNumerical Homogenization Material Parameter Identification Polymer ModelExperimentsBackground/ Motivation July 18 th 2009
21
21 COMPRESSION (PMMA) DEBONDING : Asp et al., 1996 Damage Progression Model ValidationDamage ProgressionNumerical Homogenization Material Parameter Identification Polymer ModelExperimentsBackground/ Motivation July 18 th 2009
22
Polymer Fracture Model 22 Sternstein et al, 1979 Gearing et Anand, 2004 Initiation: micro-void nucleation Propagation: Drawing of new polymer from active zone Gearing et Anand, 2004 Breakdown: Chain scission and disentanglement Element Vanish Tech. of Tvergaard, 1981 Model ValidationDamage ProgressionNumerical Homogenization Material Parameter Identification Polymer ModelExperimentsBackground/ Motivation July 18 th 2009
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.