Download presentation
Published byNeal Paul Modified over 9 years ago
1
Chapter 3 Decoder and Encoder Digital Logic Design III
وزارة التعليم العالي والبحث العلمي جامعة الكوفة - كلية التربية – قسم علوم الحاسوب Digital Logic Design III Chapter 3 Decoder and Encoder Dr. Wissam Hasan Mahdi Alagele
2
Decoder definition Decoding is the conversion of an n-bit input code to an m-bit output code with n ≤ m ≤ 2n, such that each valid code work produces a unique output code. Decoding is performed by a logic circuit called a decoder.
3
Binary Decoder Black box with n input lines and 2n output lines
Only one output is a 1 for any given input Binary Decoder n inputs 2n outputs
4
Decoders A decoder has N inputs 2N outputs
A decoder selects one of 2N outputs by decoding the binary value on the N inputs. The decoder generates all of the minterms of the N input variables. Exactly one output will be active for each combination of the inputs. What does “active” mean?
5
Princess Sumaya University
Digital Logic Design Decoders Extract “Information” from the code Binary Decoder Example: 2-bit Binary Number Only one lamp will turn on 1 2 3 Binary Decoder x1 x0 1 Dr. Bassam Kahhaleh
6
n-to-m-line decoders Circuit has n inputs and m outputs and m ≤ 2n
Start with n=1 and m=2 This a 1-to-2 Line decoder – exactly one of the output lines will be active.
7
Princess Sumaya University
Digital Logic Design Decoders A decoder when n=2 and m=4 A 2-to-4 line decoder Note that only one output is ever active Binary Decoder I1 I0 y3 y2 y1 y0 I1 I0 Y3 Y2 Y1 Y0 0 0 0 1 1 0 1 1 Dr. Bassam Kahhaleh
8
Truth Table, 3-to-8 Decoder
Notice they are minterms
9
Schematic
10
Multi-Level 3-to-8
11
Princess Sumaya University
Digital Logic Design Decoders 3-to-8 Line Decoder Binary Decoder I2 I1 I0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 Dr. Bassam Kahhaleh
12
Enable Enable is a common input to logic functions
See it in memories and today’s logic blocks
13
2-to-4 with Enable
14
Princess Sumaya University
Digital Logic Design Decoders “Enable” Control Binary Decoder I1 I0 E Y3 Y2 Y1 Y0 E I1 I0 Y3 Y2 Y1 Y0 x x 1 0 0 0 1 1 0 1 1 Dr. Bassam Kahhaleh
15
Enable Used for Expansion
16
Princess Sumaya University
Digital Logic Design Decoders Expansion I2 I1 I0 I2 I1 I0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 Binary Decoder I0 I1 E Y3 Y2 Y1 Y0 Y7 Y6 Y5 Y4 Dr. Bassam Kahhaleh
17
Princess Sumaya University
Digital Logic Design Decoders Active-High / Active-Low I1 I0 Y3 Y2 Y1 Y0 0 0 0 1 1 0 1 1 I1 I0 Y3 Y2 Y1 Y0 0 0 0 1 1 0 1 1 Binary Decoder I1 I0 Y3 Y2 Y1 Y0 Binary Decoder I1 I0 Y3 Y2 Y1 Y0 Dr. Bassam Kahhaleh
18
Implementation Using Decoders
Princess Sumaya University Digital Logic Design Implementation Using Decoders Each output is a minterm All minterms are produced Sum the required minterms Example: Full Adder S(x, y, z) = ∑(1, 2, 4, 7) C(x, y, z) = ∑(3, 5, 6, 7) I2 I1 I0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 Binary Decoder x y z S C Dr. Bassam Kahhaleh
19
Implementation Using Decoders
Princess Sumaya University Digital Logic Design Implementation Using Decoders I2 I1 I0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 Binary Decoder x y z S C I2 I1 I0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 Binary Decoder x y z S C Dr. Bassam Kahhaleh
20
Encoders An encoder has
2N inputs N outputs An encoder outputs the binary value of the selected (or active) input. An encoder performs the inverse operation of a decoder. Issues What if more than one input is active? What if no inputs are active?
21
Princess Sumaya University
Digital Logic Design Encoders Put “Information” into code Binary Encoder Example: 4-to-2 Binary Encoder Only one switch should be activated at a time 1 2 3 Binary Encoder y1 y0 x1 x2 x3 x3 x2 x1 y1 y0 0 0 0 1 1 0 1 1 Dr. Bassam Kahhaleh
22
Princess Sumaya University
Digital Logic Design Encoders Octal-to-Binary Encoder (8-to-3) Binary Encoder Y2 Y1 Y0 I7 I6 I5 I4 I3 I2 I1 I0 I7 I6 I5 I4 I3 I2 I1 I0 Y2 Y1 Y0 Dr. Bassam Kahhaleh
23
Encoder / Decoder Pairs
Princess Sumaya University Digital Logic Design Encoder / Decoder Pairs Binary Encoder Binary Decoder Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 7 7 I7 I6 I5 I4 I3 I2 I1 I0 6 6 5 5 Y2 Y1 Y0 I2 I1 I0 4 4 3 3 2 2 1 1 Dr. Bassam Kahhaleh
24
Princess Sumaya University
Digital Logic Design Multiplexers S1 S0 Y 0 0 I0 0 1 I1 1 0 I2 1 1 I3 MUX Y I0 I1 I2 I3 S1 S0 Dr. Bassam Kahhaleh
25
Princess Sumaya University
Digital Logic Design Multiplexers 2-to-1 MUX 4-to-1 MUX MUX Y I0 I1 S MUX Y I0 I1 I2 I3 S1 S0 Dr. Bassam Kahhaleh
26
Princess Sumaya University
Digital Logic Design Multiplexers Quad 2-to-1 MUX x3 x2 x1 x0 MUX Y I0 I1 S y3 y2 y1 y0 MUX A3 A2 A1 A0 S E Y3 Y2 Y1 Y0 B3 B2 B1 B0 S Dr. Bassam Kahhaleh
27
Princess Sumaya University
Digital Logic Design Multiplexers Quad 2-to-1 MUX MUX A3 A2 A1 A0 S E Y3 Y2 Y1 Y0 B3 B2 B1 B0 Extra Buffers Dr. Bassam Kahhaleh
28
Implementation Using Multiplexers
Princess Sumaya University Digital Logic Design Implementation Using Multiplexers Example F(x, y) = ∑(0, 1, 3) x y F 0 0 1 0 1 1 0 1 1 MUX Y I0 I1 I2 I3 S1 S0 1 F x y Dr. Bassam Kahhaleh
29
Implementation Using Multiplexers
Princess Sumaya University Digital Logic Design Implementation Using Multiplexers Example F(x, y, z) = ∑(1, 2, 6, 7) MUX Y I0 I1 I2 I3 I4 I5 I6 I7 S2 S1 S0 1 x y z F 1 F x y z Dr. Bassam Kahhaleh
30
Implementation Using Multiplexers
Princess Sumaya University Digital Logic Design Implementation Using Multiplexers Example F(x, y, z) = ∑(1, 2, 6, 7) x y z F 1 MUX Y I0 I1 I2 I3 S1 S0 z F = z F z F = z 1 F = 0 x y F = 1 Dr. Bassam Kahhaleh
31
Implementation Using Multiplexers
Princess Sumaya University Digital Logic Design Implementation Using Multiplexers Example F(A, B, C, D) = ∑(1, 3, 4, 11, 12, 13, 14, 15) A B C D F 1 MUX Y I0 I1 I2 I3 I4 I5 I6 I7 S2 S1 S0 D F = D D F = D D F = D F F = 0 D F = 0 1 F = D 1 F = 1 F = 1 A B C Dr. Bassam Kahhaleh
32
Multiplexer Expansion
Princess Sumaya University Digital Logic Design Multiplexer Expansion 8-to-1 MUX using Dual 4-to-1 MUX Y I0 I1 I2 I3 I4 I5 I6 I7 S2 S1 S0 MUX Y I0 I1 I2 I3 S1 S0 MUX Y I0 I1 S MUX Y I0 I1 I2 I3 S1 S0 1 0 0 Dr. Bassam Kahhaleh
33
Princess Sumaya University
Digital Logic Design DeMultiplexers DeMUX I Y3 Y2 Y1 Y0 S1 S0 S1 S0 Y3 Y2 Y1 Y0 0 0 I 0 1 1 0 1 1 Dr. Bassam Kahhaleh
34
Multiplexer / DeMultiplexer Pairs
Princess Sumaya University Digital Logic Design Multiplexer / DeMultiplexer Pairs MUX DeMUX Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 7 7 I7 I6 I5 I4 I3 I2 I1 I0 6 6 5 5 4 4 Y I 3 3 2 2 1 1 S2 S1 S0 S2 S1 S0 Synchronize x2 x1 x0 y2 y1 y0 Dr. Bassam Kahhaleh
35
DeMultiplexers / Decoders
Princess Sumaya University Digital Logic Design DeMultiplexers / Decoders DeMUX I Y3 Y2 Y1 Y0 S1 S0 Binary Decoder I1 I0 E Y3 Y2 Y1 Y0 E I1 I0 Y3 Y2 Y1 Y0 x x 1 0 0 0 1 1 0 1 1 S1 S0 Y3 Y2 Y1 Y0 0 0 I 0 1 1 0 1 1 Dr. Bassam Kahhaleh
36
Princess Sumaya University
Digital Logic Design Three-State Gates Tri-State Buffer Tri-State Inverter C A Y 0 x Hi-Z 1 0 1 1 1 A Y C A Y C Dr. Bassam Kahhaleh
37
Princess Sumaya University
Digital Logic Design Three-State Gates C D Y 0 0 Hi-Z 0 1 B 1 0 A 1 1 ? A Y C B Not Allowed D A C B A if C = 1 B if C = 0 Y= Dr. Bassam Kahhaleh
38
Princess Sumaya University
Digital Logic Design Three-State Gates I3 I2 Y I1 I0 Binary Decoder Y3 Y2 Y1 Y0 S1 I1 I0 E S0 E Dr. Bassam Kahhaleh
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.