Presentation is loading. Please wait.

Presentation is loading. Please wait.

THE CONFORMATIONAL BEHAVIOUR OF GLUCOSAMINE I. PEÑA, L. KOLESNIKOVÁ, C. CABEZAS, C. BERMÚDEZ, M. BERDAKIN, A. SIMAO, J.L. ALONSO Grupo de Espectroscopia.

Similar presentations


Presentation on theme: "THE CONFORMATIONAL BEHAVIOUR OF GLUCOSAMINE I. PEÑA, L. KOLESNIKOVÁ, C. CABEZAS, C. BERMÚDEZ, M. BERDAKIN, A. SIMAO, J.L. ALONSO Grupo de Espectroscopia."— Presentation transcript:

1 THE CONFORMATIONAL BEHAVIOUR OF GLUCOSAMINE I. PEÑA, L. KOLESNIKOVÁ, C. CABEZAS, C. BERMÚDEZ, M. BERDAKIN, A. SIMAO, J.L. ALONSO Grupo de Espectroscopia Molecular. Unidad asociada CSIC Laboratorios de Espectroscopia y Bioespectroscopia Edificio Quifima. Parque Científico Universidad de Valladolid SPAIN

2 Introduction D-Glucose - 4 C 1 -anomer β - 4 C 1 -anomer 1 2 3 4 5 6 Alonso, J. L. et al. Chemical Science 2014, 5, 515. GAS PHASE  The first conformational characterization of isolated D-glucose molecule in gas phase became recently possible due to the latest developments of Fourier transform microwave techniques coupled with laser ablation vaporizations methods (LA-MB-FTMW)

3 Introduction  Glucosamine is an amino monosaccharide, that differs structurally from the parent D- glucose by replacement of the hydroxyl group on C-2 by an amino group D-Glucosamine 1 2 3 4 5 6 D-Glucose 1 2 3 4 5 6  It is an essential precursor of important nitrogen-containing macromolecules like glycoproteins, glycolipids and glycosaminoglycans  D-glucosamine is chemically unstable, only commercially available as D-glucosamine hydrochloride, where it appears in the protonated form  No experimental data on the conformational behavior of its neutral form has been reported hitherto

4 Aims  Generation of neutral D-glucosamine in gas phase (?) by laser ablation of the crystalline sample D-glucosamine hydrochloride  Study of the conformational behavior of D-glucosamine in isolation conditions of the gas phase (in a supersonic expansion)  Comparison of the conformational behavior of D-glucosamine with that observed in the archetypal D-glucose. How does the replacement of the OH group by the NH 2 group affect the conformational behavior?

5 Modelling: plausible configurations  -forms β- forms Newman projections of plausible conformations of the hydroxymethyl group around the C 5  C 6 (G , G+, T) and C 6  O 6 (g , g+, t) bonds

6 Experimental: CP-FTMW + Laser Ablation 6-18 GHz Frequency Range S. Mata I. Peña, et al. J. Mol. Spectr. 280(2012) 91–96 GEM. Valladolid

7 CP-FTMW spectra: assignment Rotamer I 7 07 6 16 7 07 6 06 7 17 6 16 7 17 6 06 a-type (J + 1) 0 J +1 ← J 0 J and (J + 1) 1 J +1 ← J 1 J and b-type (J + 1) 1 J +1 ← J 0 J and (J + 1) 0 J +1 ← J 1 J R-branch progressions become degenerated with the increasing J 8 08 7 17 9 09 8 18 8 18 7 17 9 19 8 18 8 18 7 07 8 08 7 07 9 09 8 08 9 19 8 08 unknown (H 2 O) 2 CH 2 CHCHO HC 3 N CH 2 CHCN (H 2 O) 6 unknown

8 Results ExperimentRotamer IRotamer IIRotamer III A [a] / MHz1269.4108 (23) [e] 1305.3545 (29)1389.896 (18) B / MHz781.1783 (13)760.1481 (12)738.65091 (94) C / MHz577.43929 (36)531.25706 (33)535.50479 (54) a-type transitions [b] observed b-type transitionsobserved  c-type transitions   N [c] 314221  fit [d]  / kHz23.326.119.2 Theory A [a] BCχ aa χ bb χ cc |μ a ||μ b ||μ c |ΔE [b] ΔG [c]  -G-g+/cc/t 12767845812.21  3.92 1.703.03.80.100  -G+g-/cc/t 13137635340.66  2.44 1.783.03.21.23119  -Tg+/cc/t 13987405382.54  4.33 1.794.11.70.9113205  -G-g+/cl/g- 12967885732.760.51  3.26 1.00.71.2329327  -Tt/cl/g- 1404752544 2.760.46  3.22 2.40.60.3541613  -Tg-/cl/g- 1400748542 2.750.40  3.15 0.10.50.0587672 β -G-g+/cc/t11778185352.34-3.371.032.82.22.50d0d 0 β -G+g-/cc/t11807904950.70-2.381.682.62.01.03716 β -Tg+/cc/t13177354952.40-4.101.713.20.41.0140230 NO CONCLUSIVE IDENTIFICATION!! -forms WHAT ABOUT THE QUADRUPOLE CONSTANTS??

9 Results The values of  aa,  bb and  cc can discriminate conformers  -G-g+/cc/t  - G+g-/cc/t  - Tg+/cc/t  - G-g+/cl/g-  - Tt/cl/g-  - Tg-/cl/g- cc cl  aa /MHz 2.21  bb /MHz -3.92  cc /MHz1.70  aa /MHz 0.66  bb /MHz -2.44  cc /MHz1.78  aa /MHz 2.54  bb /MHz -4.33  cc /MHz1.79  aa /MHz 2.76  bb /MHz 0.51  cc /MHz-3.26  aa /MHz 2.76  bb /MHz 0.46  cc /MHz-3.22  aa /MHz 2.75  bb /MHz 0.40  cc /MHz-3.15 14 N

10 Experimental: LA-MB-FTMW A high resolution LA-MB-FTMW study is needed FT-MW Spectrometer Fabry-Pérot Resonator Picosecond Laser 3-10 GHz I. Peña et al. JACS 134 (2012) 2305–2312 3232 F’F’’=54 4343 3232 4343 5454 14 N nuclear quadrupole coupling hyperfine structure is completely resolved Rotamer III Rotamer I

11 Results Theory A [a] BCχ aa χ bb χ cc |μ a ||μ b ||μ c |ΔE [b] ΔG [c]  -G-g+/cc/t 12767845812.21  3.92 1.703.03.80.100  -G+g-/cc/t 13137635340.66  2.44 1.783.03.21.23119  -Tg+/cc/t 13987405382.54  4.33 1.794.11.70.9113205  -G-g+/cl/g- 12967885732.760.51  3.26 1.00.71.2329327  -Tt/cl/g- 1404752544 2.760.46  3.22 2.40.60.3541613  -Tg-/cl/g- 1400748542 2.750.40  3.150.10.50.0587672 Experiment Rotamer IRotamer IIRotamer III A [a] / MHz1269.4100 (15) [e] 1305.34810 (82)1390.0011 (14) B / MHz781.18234 (26)760.14999 (14)738.65282 (13) C / MHz577.437380 (86)531.255624 (50)535.499914 (56) χ aa [b] / MHz2.159 (16)0.637 (5)2.487 (6) χ bb / MHz  3.727 (14)  2.278 (4)  4.129 (5) χ cc / MHz1.567 (14)1.641 (4)1.642 (5) N [c] 323018  fit [d]  / kHz 1.3 1.1 A conclusive identification is achieved!

12 Conclusions  Neutral D-glucosamine has been succesfully generated in gas phase by laser ablation of the crystalline sample D-glucosamine hydrochloride  Only  -pyranose forms have been observed, thus preserving the  -pyranose form present in the X-ray studies. No interconversion reaction between the  and β forms takes place during the laser ablation process  The most abundant conformers are stabilized by a chain of four cooperative hydrogen bonds (O 4 H  O 3 H  N 2 H  O 1 H  O 5 ) and one non-cooperative (O 6 H  O 5 ). The least abundant exhibits five cooperative H-bonds, O 6 H  O 4 H  O 3 H  N 2 H  O 1 H  O 5.

13 Conclusions -D-Glucosamine G-g+/cc/tG+g-/cc/tTg-/cc/t O 4 HO 3 HN 2 HO 1 HO 5 O 6 HO 5 O 4 HO 3 HN 2 HO 1 HO 5 O 6 HO 5 O 6 HO 4 HO 3 HN 2 HO 1 HO 5

14 Conclusions  Neutral D-glucosamine has been succesfully generated in gas phase by laser ablation of the crystalline sample D-glucosamine hydrochloride  Only  -pyranose forms have been observed, thus preserving the  -pyranose form present in the X-ray studies. No interconversion reaction between the  and β forms takes place during the laser ablation process  The most abundant conformers are stabilized by a chain of four cooperative hydrogen bonds (O 4 H  O 3 H  N 2 H  O 1 H  O 5 ) and one non-cooperative (O 6 H  O 5 ). The least abundant exhibits five cooperative H-bonds, O 6 H  O 4 H  O 3 H  N 2 H  O 1 H  O 5.  The substitution of the hydroxyl group at C-2 by the amino group in  -D-glucosamine does not introduce any changes into the gas phase conformational preferences; the three observed conformers of D- glucosamine correlate with those observed in  -D-glucose.

15 Conclusions -D-Glucosamine -D-Glucose G-g+/cc/tG+g-/cc/tTg-/cc/t O 4 HO 3 HN 2 HO 1 HO 5 O 6 HO 5 O 4 HO 3 HN 2 HO 1 HO 5 O 6 HO 5 O 6 HO 4 HO 3 HN 2 HO 1 HO 5 O 4 HO 3 HN 2 HO 1 HO 5 O 6 HO 5 O 4 HO 3 HN 2 HO 1 HO 5 O 6 HO 5 O 6 HO 4 HO 3 HN 2 HO 1 HO 5

16 Conclusions  Neutral D-glucosamine has been succesfully generated in gas phase by laser ablation of the crystalline sample D-glucosamine hydrochloride  Only  -pyranose forms have been observed, thus preserving the  -pyranose form present in the X-ray studies. No interconversion reaction between the  and β forms takes place during the laser ablation process  The most abundant conformers are stabilized by a chain of four cooperative hydrogen bonds (O 4 H  O 3 H  N 2 H  O 1 H  O 5 ) and one non-cooperative (O 6 H  O 5 ). The least abundant exhibits five cooperative H-bonds, O 6 H  O 4 H  O 3 H  N 2 H  O 1 H  O 5.  The substitution of the hydroxyl group at C-2 by the amino group in  -D-glucosamine does not introduce any changes into the gas phase conformational preferences; the three observed conformers of D- glucosamine correlate with those observed in  -D-glucose.  The orientation of the NH 2 group within each conformer has been delineated by the values of the nuclear quadrupole constants; adopts the same role than the OH group in the intramolecular hydrogen bonding network.

17 Conclusions -D-Glucosamine -D-Glucose G-g+/cc/tG+g-/cc/tTg-/cc/t O 4 HO 3 HN 2 HO 1 HO 5 O 6 HO 5 O 4 HO 3 HN 2 HO 1 HO 5 O 6 HO 5 O 6 HO 4 HO 3 HN 2 HO 1 HO 5 O 4 HO 3 HN 2 HO 1 HO 5 O 6 HO 5 O 4 HO 3 HN 2 HO 1 HO 5 O 6 HO 5 O 6 HO 4 HO 3 HN 2 HO 1 HO 5

18 ACKNOWLEDGMENTS Grants CTQ 2010- 19008, AYA 2009-07304 and AYA 2012-32032 CSD 2009-00038 Molecular Astrophysics Grants VA070A08 and CIP13/01 Grupo de Espectroscopia Molecular (GEM) Laboratorios de Espectroscopia y Bioespectroscopia, Unidad Asociada CSIC, UVa,Valladolid, Spain


Download ppt "THE CONFORMATIONAL BEHAVIOUR OF GLUCOSAMINE I. PEÑA, L. KOLESNIKOVÁ, C. CABEZAS, C. BERMÚDEZ, M. BERDAKIN, A. SIMAO, J.L. ALONSO Grupo de Espectroscopia."

Similar presentations


Ads by Google