Download presentation
Presentation is loading. Please wait.
Published byTerence Mills Modified over 9 years ago
1
Functional Anatomy of Heart Dr.Mohammed Sharique Ahmed Quadri Assistant Professor Physiology Almaarefa College 1
2
2
3
FUNCTIONAL ANATOMY OF HEART 3 Heart beat starts in the fourth week after conception during intra-uterine life, when embryo is only few millimeters. Throughout life, heart keeps on beating and it contracts about 3 billion times during an average life span.
4
Circulatory System Three basic components – Heart Serves as pump that establishes the pressure gradient needed for blood to flow to tissues – Blood vessels Passageways through which blood is distributed from heart to all parts of body and back to heart – Blood Transport medium within which materials being transported are dissolved or suspended 4
5
CIRCULATORY SYSTEM 5 We have two types of circulation: i). Pulmonary Circulation ii). Systemic Circulation Pulmonary Circulation Blood is carried from the right ventricle of the heart to lungs and back to left atrium of the heart. Systemic Circulation Blood is carried from left ventricle to the body and back to the right atrium.
6
Circulatory System 6
7
7
8
FUNCTIONAL ANATOMY OF HEART 8 Heart is muscular organ. It is involuntary, present in the middle of the thoracic cavity, about the size of fist [14cm long, 9cm wide]. Sternum lies anteriorly and vertebral column [backbone] lies posteriorly and lungs laterally. Heart has base and apex. - Base is at the top, behind the 2 nd intercostal space. - Apex is lower down in the 5 th left intercostal space. Slightly below nipple towards mid line
9
FUNCTIONAL ANATOMY OF HEART 9 Applied As the heart lies between the sternum and vertebral column, it is possible to compress the sternum and drive blood out of the heart when heart is not pumping effectively. This external compression of heart is done in CPR [Cardio-Pulmonary Resuscitation], which is life saving, till proper therapy can be given.
10
Circulatory System Heart IS A Dual pump – Right and left sides of heart function as two separate pumps – Divided into right and left halves and has four chambers Atria – Upper chambers – Receive blood returning to heart and transfer it to lower chambers Ventricles – Lower chambers which pump blood from heart 10
11
HEART AS A PUMP 11 Right and left atrium are separated from each other by interatrial septum. Right and Left ventricle are separated by interventricular septum. [Septum is muscular wall which does not allow the blood to mix between two sides.]
12
HEART AS A PUMP 12 In between atria and ventricle, there is fibrous ring, in which valves are embedded. Right atrium gets the blood from superior venaceva [SVC] and inferior venaceva [IVC]. It is deoxygenated blood. Blood from right atrium goes to right ventricle through right AV valve or Tricuspid valve.
13
HEART AS A PUMP 13 From right ventricle, blood goes to pulmonary artery through pulmonary valve, to the lungs. In the lungs, blood gets oxygenated and is returned to left atrium by 4 pulmonary veins. IMPORTANT Remember Pulmonary Artery is the only artery which carries deoxygenated blood and Pulmonary veins are only veins in the body which carry oxygenated blood.
14
HEART AS A PUMP 14 From left atrium, blood goes to left ventricle through left AV valve or mitral valve [bicuspid valve]. From left ventricle, blood goes to aorta through aortic valve to the body.
15
15
16
COMPARISON OF RIGHT & LEFT PUMPS RIGHT PUMPLEFT PUMP 16 Both sides pump equal amount of blood. Right side has deoxygenated blood [goes to lungs and gets O 2 in the lungs]. Pulmonary Circulation is low pressure circulation. Pulmonary Circulation is low resistance circulation. Right ventricle wall is thin [2-3mm]. Both sides pump equal amount of blood. Left side has oxygenated blood. Systemic Circulation is high pressure circulation. Systemic Circulation is high resistance circulation. Left ventricle wall is thick [8-10mm].
17
17
18
HEART VALVES 18 There are four valves. They are one way valve. Valves open and close passively because of pressure difference. Function of the valve is to prevent back flow of the blood.
19
19
20
HEART VALVES 20 Four Valves are: Two AV [Atrioventricular] Valves i). Right AV Valve – Tricuspid Valve ii). Left AV Valve – Mitral or Bicuspid Valve Semi lunar Valves iii). Aortic Valve iv). Pulmonary Valve
21
Heart valves 21
22
AV VALVES 22 AV Valves [Tricuspid & Mitral] are attached to the papillary muscle and chordae tendineae. Chordae tendineae are tendon like tissue and their function is prevent the eversion or bulging of valves into atria. Chordae tendineae are attached to papillary muscle which protrude from inner surface of ventricular valve. Important -- Papillary muscle and chordae tendineae are attached to AV valves only.
23
AV VALVES 23 When ventricle contract, papillary muscle also contract and pull down the chordae tendineae, which keeps the valve tightly closed. There are three papillary muscles attached to the right AV valve [tricuspid valve]. There are two papillary muscle attach to the left AV valve [bicuspid or mitral valve].
24
SEMI-LUNAR VALVES 24 Aortic Valve and Pulmonary Valve Aortic Valve is present at the beginning of aorta and has three cusps. Pulmonary Valve is present at the beginning of pulmonary artery and has three cusps. Aortic and Pulmonary Valve open when pressure increases in left and right ventricle during ventricular contraction. They close when ventricular pressure decreases than aortic and pulmonary artery pressure. They prevent back flow of the blood.
25
Heart Valves 25
26
FIBROUS SKELETON OF THE HEART 26 In between atria and ventricles, there is fibrous ring [it is dense connective tissue]. It provides base for attachment of four heart valves. Atrial Muscle is attached to upper part and ventricular muscle is attached to the bottom of the ring. Fibrous ring is non-conductive, therefore, special conductive tissue is required to conduct impulse from atria to ventricle.
27
27 FIBROUS SKELETON OF THE HEART
28
LAYERS OF THE HEART 28 Heart has 3 Layers: 1. Endothelium – inner lining of the heart 2. Myocardium – cardiac muscle tissue 3. Pericardium – external layer Pericardium has two layers inner visceral [called epicardium] and outer parietal layer. There is pericardial fluid about 5 – 30 ml present between two layers. It prevents friction between the layers as they move over each other with every beat of the heart.
29
APPLIED - PERICARDITIS 29 Pericarditis is the inflammation of pericardium. It results in painful friction rub between the two layers of pericardium. It can be caused by viral or bacterial infection.
30
BLOOD SUPPLY TO THE HEART 30 Heart is supplied by coronary arteries [branches of aorta]. Cardiac muscle fibers have rich blood supply, about 1 capillary for each myocardial fiber. Cardiac muscle has abundance of energy generating mitochondria.
31
AUTONOMIC NERVE SUPPLY 31 Heart is supplied by sympathetic and parasympathetic nerves. Sympathetic Stimulation causes increased force of contraction [positive INOTROPIC effect] and increase heart rate [positive CHRONOTROPIC effect]. Parasympathetic Stimulation decreased force of contraction [negative INOTROPIC effect] and decrease in heart rate [negative CHRONOTROPIC effect].
32
32
33
CARDIAC MUSCLE MICROSCOPIC STRUCTURE 33 Cardiac Muscle fibers are connected by membrane called ‘INTERCALATED DISC’. Intercalated Disc have gap junction. Gap Junction allow relatively free diffusion of ions, therefore, action potential travels from one cell to another easily. Therefore, cardiac muscle works as SYNCYTIUM [one unit], therefore, heart can be depolarized all at one time, it obeys all or none law.
34
34
35
Cardiac Muscle Fibers 35
36
CARDIAC MUSCLE MICROSCOPIC STRUCTURE 36 We have Atrial Syncytium and Ventricular Syncytium. They contract as separate units as they are separated by non-conducting fibrous ring. The impulse travels from the atria to the ventricle by specialized conductive tissue.
37
References Human physiology by Lauralee Sherwood, seventh edition Text book physiology by Guyton &Hall,11 th edition Text book of physiology by Linda.s contanzo,third edition 37
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.