Download presentation
Presentation is loading. Please wait.
Published byShon French Modified over 9 years ago
1
11.6.2015 Software Verification 1 Deductive Verification Prof. Dr. Holger Schlingloff Institut für Informatik der Humboldt Universität und Fraunhofer Institut für offene Kommunikationssysteme FOKUS
2
Folie 2 H. Schlingloff, Software-Verifikation I Invariably: Starter Questions … What is an invariant? How is it used in verification? Is the set of invariants of a loop recursive? … or recursively enumerable? Is there any decidable invariant? How to construct an invariant for a given loop? E.g. {i=0; while (i<n) {i++}} E.g. {i=0; while (i<n) {i++; j--}} E.g. {i=0; while (i<n) {i++; j+=i}}
3
Folie 3 H. Schlingloff, Software-Verifikation I While [] -Programs While-Programs are Turing-complete, but not very convenient to use Missing: arrays, pointers, data structures, functions & procedures, modules, inheritance, … Today: arrays and search Introduce array type X[n], where X is any type and n is any integer set V [] of indexed program variables: if i is a program variable of type Int and a is an array variable of type X[n], then a[i] is an indexed program variable of type X while [] Prog: Indexed program variables can be used in terms and expressions wherever “normal” program variables are allowed Semantics: An array variable a: X[n] is evaluated as a partial function V( a ): Int X {undef} V( a )(x) = undef if x < 0 or x ≥ n V( a[i] ) = V( a ) (V( i ))
4
Folie 4 H. Schlingloff, Software-Verifikation I Example: Binary Search Input: a sorted array x:Int[n] (i.e., i (x[i-1]<x[i]) ) and a value a to search for Result: index i s.t. x[j] =a for i<=j<n : i=0; k=n; while (i<k) { s=(i+k-1)/2; // integer division if (a>x[s]) i=s+1 else k=s } : i=0; k=n; while (i<k) { s=(i+k-1)/2; // integer division if (a>x[s]) i=s+1 else k=s } Correctness: Show {n>=0 i(0<i<n (x[i-1]<x[i])} {0 =a} >=a<a x: i >=a<a x: iks
5
Folie 5 H. Schlingloff, Software-Verifikation I Invariant for Binary Search x is sorted 0 : i(0<i<n (x[i-1]<x[i]) i is changed such that 1 : 0<=i<=n j(0<=j<i x[j]<a) k is changed such that 2 : 0 =a) additionally 3 : i<=k Let = 0 1 2 3
6
Folie 6 H. Schlingloff, Software-Verifikation I Hoare Proof for Binary Search {n>=0 i(0<i<n (x[i-1]<x[i])} i=0; k=n; { } while (i<k) { { i<k} s=(i+k-1)/2; //integer division if (a>x[s]) i=s+1 else k=s { } } { i>=k} {i=k 0 =a)} {0 =a)}
7
Folie 7 H. Schlingloff, Software-Verifikation I : 0 =a) { i<k} s=(i+k-1)/2; { i<k s==(i+k-1)/2} if (a>x[s]) i=s+1 else k=s { } holds since { i x[s]} { [i:=s+1]} i=s+1 { } { i<k s==(i+k-1)/2 a<=x[s]} { [k:=s]} k=s { } proof: see next
8
Folie 8 H. Schlingloff, Software-Verifikation I : 0 =a) Show: i<k s=(i+k-1)/2 x[s]<a [i:=s+1] i<k s=(i+k-1)/2 x[s]<a 0<= s+1 <= k <= n j(0<=j< s +1 x[j]<a) i<k s=(i+k-1)/2 x[s]<a (i+k+1)/2 <= k j(0<=j<= (i+k-1)/2 x[j]<a) holds since i<k i+k<k+k i+k+1<=2*k (i+k+1)/2<=k x[s]<a j=s x[j]<a 0 x[s]<a j<s x[j]<a
9
Folie 9 H. Schlingloff, Software-Verifikation I Haha Binary Search in Haha
10
Folie 10 H. Schlingloff, Software-Verifikation I Last Example: Bubblesort Given an array x [0..n-1] of integers, the task is to sort x Bubblesort repeatedly exchanges “unordered” elements in x, e.g.: 6 – 3 – 8 – 4 – 1 3 – 6 – 8 – 4 – 1 3 – 6 – 4 – 8 – 1 3 – 6 – 4 – 1 – 8 3 – 4 – 6 – 1 – 8 3 – 4 – 1 – 6 – 8 3 – 1 – 4 – 6 – 8 etc.
11
Folie 11 H. Schlingloff, Software-Verifikation I Bubblesort Algorithm : : i=n; : while (i>1) { : i=i-1; k=0; : while (k!=i){ : k++; : if (x[k-1]>x[k]) swap(x[k-1], x[k]) : } : } :
12
Folie 12 H. Schlingloff, Software-Verifikation I Specification of Sortedness x is sorted sorted(x): i(0<i<n x[i-1] <= x[i]) x is a permutation of the input array ? For sake of simplicity: assume all elements in x are pairwise unequal: diff(x): i,j(0<=i != j<n (x[i]!=x[j])} in this case, x is a permutation of y iff perm(x,y): a( i x[i]==a i y[i]==a) Specification {x==y diff(x)} {sorted(x) perm(x,y)}
13
Folie 13 H. Schlingloff, Software-Verifikation I Invariant for Bubblesort Invariant for loop at : after first iteration: x[n-1] at correct position after second iteration: x[n-1] and x[n-2] at correct position after third iteration: x[n-1].. x[n-3] at correct position... ordered(x, i):1<=i<=n j(i<=j<n x[j-1] < x[j]) j(0<=j<i <n x[j] <= x[i]) then we have: ordered(x, n) T ordered(x, 1) sorted(x) I : diff(x) perm(x,y) ordered(x,i)
14
Folie 14 H. Schlingloff, Software-Verifikation I Proof of Outer Loop x==y diff(x) perm(x,y) : x==y diff(x) : x==y diff(x) i==n x==y diff(x) i==n diff(x) perm(x,y) ordered(x,i) : x==y diff(x) : I : I : I (i 1) : I perm(x,y) ordered(x,i) (i<=1) perm(x,y) sorted(x) : I : sorted(x) perm(x,y) : x==y diff(x) : perm(x,y) sorted(x) that is, {x==y diff(x)} {sorted(x) perm(x,y)}
15
Folie 15 H. Schlingloff, Software-Verifikation I Inner Invariant It remains to show: : I (i>1) : I Invariant for loop at : perm(x,y) ordered(x,i+1) remains stable goal of the inner loop: maximal element from x[0]...x[i-1] is moved to x[i-1] after each step: 0 =x[j]) I : perm(x,y) ordered(x,i+1) 0 =x[j])
16
Folie 16 H. Schlingloff, Software-Verifikation I Proof of Inner Invariant : I (i>1) : perm(x,y) ordered(x,i+1) k==0 perm(x,y) ordered(x,i+1) k==0 I : I (i>1) : I : I : I (k==i), provided that : I (k!=i) : I I (k==i) perm(x,y) ordered(x,i+1) j(0 =x[j]) : I (i>1) : I it remains to show: : I (k!=i) : I perm(x,y) remains unchanged ordered(x,i+1) is not modified : 0 =x[j]) k!=i : 0 =x[j]) : I (k!=i) : 0 =x[j])
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.