Presentation is loading. Please wait.

Presentation is loading. Please wait.

Anesthesia in Laser Surgery

Similar presentations


Presentation on theme: "Anesthesia in Laser Surgery"— Presentation transcript:

1 Anesthesia in Laser Surgery
R1 Minghui Hung Department of Anesthesiology, NTUH

2 “Never are cooperation and communication between surgeon and anesthesiologist more important than during head and neck surgery.” Morgan, Clinical Anesthesiology

3

4 Physics of Laser light (I)
Light Amplification by Stimulated Emission of Radiation Electromagnetic radiation Einstein: all electromagnetic radiation consisted of wavelike quanta called photons →E (J) = h v Wavelength for visible light ranges from 385nm to 760 nm

5 Physics of Laser light (II)
Characteristics: Monochromatic (one wavelength) Coherent (oscillates in the same phase) Collimated (exists as a narrow, parallel beam) Intense light beams, intense energy to small target sites

6 Laser system components

7 Laser system components Light guide

8 Clinical applications
Used as scalpels and electrocoagulators Dermatology, thoracic surgery, ophthalmology, gynaecology, plastics, ENT, urology and neurosurgery

9 Laser interaction with tissue
Used as scalpels and electrocoagulators Precise microsurgery Relative “dry” Less damage to adjunct tissue Less postoperative pain and edema

10 Common used Laser lights
Laser media Color Wavelength (nm) Typical application Carbon dioxide Far infrared 10,600 General, cutting Ruby Red 694 Tattoos, nevi KTP:YAG Green 532 General, pigmented lesions Argon 514 Vascular, Xenon fluoride Ultraviolet 351 Cornea, angioplasty

11 Laser Hazards Atmospheric contamination
Perforation of a vessels or structure Embolism Inappropriate energy transfer

12 Atmospheric contamination
Plume of smoke and fine particulates (mean size 0.31um) Efficiently transported and deposited in the alveoli Sensitive individuals: headaches, tearing, and nausea after inhalation Animal study: interstitial pneumonia, bronchiolitis, reduced mucociliary clearance, inflammation, emphysema Prevention → smoke evacuator → high-efficiency masks

13 Perforation Misdirected laser energy may perforate a viscus or a large blood vessel Laser-induced pneumothorax Perforation may occur several days later when edema and necrosis are maximal

14 Venous gas embolism Venous gas embolism when laparoscopic or hysteroscopic laser surgery At hysteroscopy, liquid (saline) coolant is the only safe option If coolant gas must be used, CO2 should be considered → Continuous airway CO2 monitoring

15 Inappropriate energy transfer
Incidentally pressing the laser control trigger Tissue damage outside of surgical site Drape fire Eye (patient or other medical staff) Endotracheal tube fires

16 Endotracheal tube fires
Incidence: 0.5 – 1.5 % Source: direct laser illumination reflected laser light incandescent particles of tissue blown from the surgical site

17 Blowtorch ignition of an endotracheal tube.

18 Approaches to reduce the incidence of airway fire
Reduce the flammability of the endotracheal tube Use Venturi ventilation Use intermittent apnea technique

19 Various endotracheal tubes for laser airway surgery
Type of tube Advantages Disadvantages Polyvinyl chloride Inexpensive, nonreflective Low melting point, highly combustible Red rubber Puncture-resistant, maintains structure, nonreflective Highly combustible Silicone rubber Nonreflective Combustible, turns to toxic ash Metal Combustion-resistant, kink-resistant Thick-walled flammable cuff, transfers heat, reflects laser, cumbersome

20 of the endotracheal tubes
Protection of the endotracheal tubes wrapping with moistened muslin coating with dental acrylic wrapping with metallized foil tape → most popular approach aluminum foil copper foil plastic tape thinly coated with metal

21 Cuff wrapping technique
methylene blue stained saline instead of air

22 Disadvantages of wrapping
No cuff protection Adds thickness to tube Not an FDA-approved device Protection varies with type of metal foil Adhesive backing may ignite May reflect laser onto non-targeted tissue Rough edges may damage mucosal surfacess

23 Effect of high oxygen and nitrous oxide gas mixture
Oxygen and nitrous oxide are powerful oxidizers Reduce FiO2 to minimum concentration Helium may benefit as a diluent gas Volatile anesthetics currently used are nonflammable and nonexplosive Pyrolized toxic compounds

24 Metal endotracheal tubes
Norton. spiral wound stainless steel ETT Bivona Fome-Cuff. aluminium spiral tube with a silicone polyurethane foam cuff Xomed Laser-Shield. silicone elastomer tube containing metallic powder Mallinckrodt Laser-Flex. airtight stainless steel spiral wound tube with two PVC cuffs

25 Intermittent apnea technique
Jet ventilation Barotrauma Pneumothorax Restriction to only intravenous agents Gastric distention Relative requirement for compliant lungs Intermittent apnea technique Hypoventilation Pulmonary aspiration

26 Airway fires protocol (I)
Remove source of fire (the laser!). Stop ventilating, disconnect circuit, extubate. Extinguish fire in bucket of water (MUST have one ready!). Mask ventilate with 100% O2, continue anaesthesia i.v. Direct laryngoscopy & rigid bronchoscopy for damage and debris.

27 Airway fires protocol (II)
Reintubate if damage. Blowtorch fire may need distal fibreoptic bronchoscopy and lavage. Severe damage may need low tracheostomy. Assess oropharynx and face. CXR. Steroids.

28 I am a sheep. SHEEP me 2. We wish you… 羊 羊 得 意


Download ppt "Anesthesia in Laser Surgery"

Similar presentations


Ads by Google