Download presentation
Presentation is loading. Please wait.
Published byGiles Summers Modified over 9 years ago
1
Application: Targeting & control d=0d>2d=1d≥2d>2 Challenging! No so easy!
2
References Hand book of Chaos Control Schoell and Schuster (Wiley-VCH, Berlin, 2007)
3
Possible motions Stochastic Nonlinear Partial Differential Equation: Solitons Fixed Point
4
Chaos Control Fixed point Periodic Chaotic ? ? ?
5
Heart Activity: Periodic
6
Chaos to Periodic: Heart Attack Christini D J et al. PNAS 98, 5827(2001)
7
Chaos to Fixed Point solution: Laser
8
Chaos Control Difficulty due to Nonlinearity
9
Chaos ? Sensitive to initial conditions? UPOs: Unstable Periodic Orbits : Skeleton of Chaotic motion How to find UPOs: Lathrop and Kostelich Phys. Rev. A, 40, 4028 (1998)
10
Chaos ? Sensitive to initial conditions? UPOs: Unstable Periodic Orbits : Skeleton of Chaotic motion exp h Number of UPOs of period T : h=Topological Entropy
11
Chaos to Periodic motion (OGY-method) Ott, Grebogi and Yorke, Phys. Rev. Lett. 64, 1196 (1990) Stabilizing UPOs !!
12
Chaos to Periodic motion (OGY-method)
13
Find the accessible parameter Represent system by Map Find the periodic orbit/point Find the maximum range of parameter which is acceptable to vary Fixed point should vary with change of parameter
14
Chaos to Periodic motion (Pyragas-method) K. Pyragas, Phys. Lett. A 172, 421(1992)
15
Chaos to Periodic motion (Pyragas-method)
17
Chaos to Fixed Point solution K. Bar-Eli, Physica D 14, 242 (1985)
18
Interaction X= (X) Y= (Y) What will be effect of interaction ??.. X= (X)+F X ( , X, Y) Y= (Y)+G Y ( /, Y, X)..
19
Interactions 1 F [ , X 1, X 2 ] 1 F [ , X 1, Y 2 ] 1 F [ , X 1 (t), X 2 (t)] F [ , X 1 (t- ), X 2 (t)] F [ , X 1 (t- ), Y 2 (t)] 1 F [ , X 1 (t), Y 2 (t)]
20
Oscillation Death 1 F [ , X 1, X 2 ] 1 F [ , X 1, Y 2 ] 1 F [ , X 1 (t), X 2 (t)]F [ , X 1 (t- ), X 2 (t)] F [ , X 1 (t- ), Y 2 (t)] 1 F [ , X 1 (t), Y 2 (t)] Nonidentical Identical/Nonidentical
21
Systems X= (X) Y= (Y). ? Fixed Point Periodic Quasiperiodic Chaotic Generalized synch. Stochastic Resonance Stabilization Strange nonchaotic … Synchronization Riddling, Phase-flip Anomalous Individual Interacting Forced Amplitude Death …
22
Analysis of coupled systems Effect Interaction -- Instantaneous -- Delayed -- Integral -- Conjugate -- ……. -- Linear -- Nonlinear -- ….. -- Diffusive -- One way -- …… -- Synchronization -- Hysteresis -- ….. -- Riddling -- Hopf -- Intermittency -- ….. -- Phase-flip -- Anomalous -- Amplitude Death -- ……
23
Effect of interaction: Amplitude Death (No Oscillation) Oscillators derive each other to fixed point and stop their oscillation
24
Experimental verification Reddy, et al., PRL, 85, 3381(2000)
25
Experiment: Coupled lasers M.-Y. Kim, Ph.D. Thesis, UMD,USA R. Roy, (2006);
26
Amplitude Death:- possible FPs F
27
Coupled chaotic oscillators O1O1 O2O2 X*=(x 1*,x 2*,y 1*,y 2*,z 1*,z 2* ) Constants
28
Strategy for selecting F(X) Design : F( , x 1, x 2 )= (x 1 - ) exp[g(X)] Not good: (1) F( , x 1, x 2 )= (x 1 - ) (x 2 - ) (2) - F( , x 1*, x 2* )
29
Strategy for selecting X * For desired x 1* = : find y 1* ( ) and z 1* ( ) from uncoupled systems
30
Examples
31
Parameter space -- unbounded -- Periodic -- Fixed point
32
N - oscillators
33
Chaos to Chaos Adaptive methods Yang, Ding,Mandel, Ott, Phys. Rev. E,51,102(1995) Ramaswamy, Sinha, Gupte, Phys. Rev. E, 57, R2503 (1998)
34
Chaos to Chaos : Adaptive methods P=desired measure/value
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.