Download presentation
Presentation is loading. Please wait.
Published byTyler Palmer Modified over 9 years ago
1
Intermittently Connected Query Processing Yang Zhang, Bret Hull, Hari Balakrishnan, and Samuel Madden MIT Computer Science and AI Lab April 17, 2007
8
ICEDB Server (portal) Example Query Show me photos of traffic jams. No duplicates. Example Query Show me photos of traffic jams. No duplicates.
9
ICEDB Server (portal) wireless connection sensors + #!/usr/bin/perl while (true) { raw = read(serial); tuple = convert(raw); send(icedb, tuple); } #!/usr/bin/perl while (true) { raw = read(serial); tuple = convert(raw); send(icedb, tuple); } adapter schema data source
10
ADAPTERADAPTER ADAPTERADAPTER DB CQ Ad-hoc Query Processor Ad-hoc Query Processor Output Buffers Output Buffers CAFNETCAFNET CAFNETCAFNET
11
SELECT... EVERY n [SECONDS] BUFFER IN buffername
13
tuplesbuffer query DB
15
PRIORITY rank,weight : inter-query (local) DELIVERY ORDER BY : intra-query (local) SUMMARIZE AS : global tuplesbuffer
16
FIFO Bisect
17
ICEDB Server
19
46 3 2 1 5 from central server to central server ICEDB Server latlonins_time 31.41527.1827:30pm 31.42327.1797:35pm ……… latlonins_timerank 31.42327.1797:35pm1 31.41527.1827:30pm2 …………
21
232 days of normal driving (07/05 – 07/06) Boston and Seattle areas 260 distinct km of roads, 50% from 15 km 32,000 APs discovered, 2,000 open Mean time between APs: 23 seconds Mean association duration: 24 seconds Median TCP upload: ~200 kbytes Connectivity is equi-probable in [0,60] km/h
22
Query workloads: uniform, hotspot Camera data: 50KB Metric: fraction query points satisfied Prioritization schemes: FIFO, bisect, random, global Cars: one, many query point
24
FIFO: zero success Random/bisect: ~0.25x success of global Bottleneck: not query count, but total network capacity Global: remote nodes and central server share data
26
Intermittently Connected Query Processing Yang Zhang, Bret Hull, Hari Balakrishnan, and Samuel Madden MIT Computer Science and AI Lab http://cartel.csail.mit.edu/
27
SELECT... EVERY n [SECONDS] BUFFER IN buffername
28
ICEDB Server latlonins_time 31.41527.1827:30pm 31.42327.1797:35pm ……… latlonins_timerank 31.42327.1797:35pm1 31.41527.1827:30pm2 …………
29
Trace: 1 trip all sensor data collected between ignition on to ignition off Trace: 1 trip all sensor data collected between ignition on to ignition off
32
Trace-driven simulation
33
ICEDB Server
35
data source = ++ #!/usr/bin/perl while (true) { raw = read(serial); tuple = convert(raw); send(icedb, tuple); } #!/usr/bin/perl while (true) { raw = read(serial); tuple = convert(raw); send(icedb, tuple); }
36
Trace-driven simulation Query workloads: uniform, hotspot Camera data: 50 KB/img Metric: success ratio Prioritization schemes: FIFO, bisect, random, global Cars: one, many
39
CarTel: mobile sensor platform Opportunistic data delivery >1 year, Boston/Seattle, 260 km
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.