Presentation is loading. Please wait.

Presentation is loading. Please wait.

Servo Motor Control Demonstration.

Similar presentations


Presentation on theme: "Servo Motor Control Demonstration."— Presentation transcript:

1 Servo Motor Control Demonstration

2 incremental optical encoder
motor with gear reducer flex coupling limit switch homing switch incremental optical encoder

3 Closed-Loop Control How does the computer do this?
computer controls the current going to the motor motor gear reducer desired steering angle compared to current steering angle gear reducer and flex couplings (if needed) connect motor to steering shaft incremental optical encoder (with homing switch to initialize position) feeds back current motor position How does the computer ‘read’ the encoder information?

4

5 Computer Interface To command the motor: To ‘read’ the encoder:
The computer must be able to generate an analog voltage signal that is somehow interpreted by the motor. To ‘read’ the encoder: The computer must be able to read the +5V and 0V pulses coming from the two light detectors on the optical encoder.

6 Interface to Computer We will use a National Instruments USB-6009 data acquisition (DAQ) device specs USB interface to PC 8 channels of analog input, 0-5V 2 channels of analog output 0-5V 5 mA each 12 channels of digital input/outputs 0 or 5V, (8.5 mA for outputs) 1 counter

7 NI USB-6009

8 Interface to Computer

9 Honeywell / Clarostat 600128CN1
Allied Electronics part # cost: $41.67

10 Computer Interface Let’s start with digital inputs to interface to the optical encoder. notice that there are four wires

11

12 channels A & B will be either 0V or 5V depending on whether that light detector detects light through a slit or not ground channel A channel B +5V power

13 ground channel A channel B +5V power

14 Encoder Demo Program

15

16 Closed-Loop Control How does the computer do this? motor gear reducer
computer controls the current going to the motor motor gear reducer desired steering angle compared to current steering angle gear reducer and flex couplings (if needed) connect motor to steering shaft incremental optical encoder (with homing switch to initialize position) feeds back current motor position

17 Computer Interface to Motor
To control the motor: the computer must be able to generate an analog voltage signal however, the typical analog voltage signal that a computer generates does not have sufficient current to power the motor an amplifier is used a power supply provides 24V (7.5 amp max for our case) to the amp the computer generates an analog voltage in the range of -5V to +5V; 0V means the motor is to stop ; -5V means the motor is to turn at a maximum speed CCW ; +5V means the motor is to turn at a maximum speed CW

18 Interface to Computer

19 command analog signal emergency stop to motor from 24V power supply

20 Issue with USB-6009 & Amp The analog command signal to the amp must be from -5V to +5V. A negative voltage causes the motor to turn in the opposite direction. The USB DAQ can only output from 0 to +5V. How can we reverse the direction of the motor?

21 When we want the motor to go in the other direction, switch these two wires.
command analog signal emergency stop to motor from 24V power supply

22 Change motor direction
To go CW, set this digital output pin to TRUE (+5V). To go CCW, set this digital output pin to FALSE (0V).

23 Interface to Computer

24 Interface to Computer

25 Homing Switch 0V +5V to input pin on USB DAQ

26 Interface to Computer 0V from USB-6009 +5V from USB-6009

27 desired steering angle compared to current steering angle
digital signal E stop switch input power analog signal computer controls the current going to the motor USB connection desired steering angle compared to current steering angle gear reducer and flex couplings (if needed) connect motor to steering shaft USB connection incremental optical encoder (with homing switch to initialize position) feeds back current motor position digital signal homing switch 2 digital signals

28

29 Design Project If you decide to use a servo motor in your design:
include an optical encoder for motor position feedback include a homing switch to initialize your position include E-stop switches as needed


Download ppt "Servo Motor Control Demonstration."

Similar presentations


Ads by Google