Presentation is loading. Please wait.

Presentation is loading. Please wait.

Using VINI to Test New Network Protocols Murtaza Motiwala, Georgia Tech Andy Bavier, Princeton University Nick Feamster, Georgia Tech Santosh Vempala,

Similar presentations


Presentation on theme: "Using VINI to Test New Network Protocols Murtaza Motiwala, Georgia Tech Andy Bavier, Princeton University Nick Feamster, Georgia Tech Santosh Vempala,"— Presentation transcript:

1 Using VINI to Test New Network Protocols Murtaza Motiwala, Georgia Tech Andy Bavier, Princeton University Nick Feamster, Georgia Tech Santosh Vempala, Georgia Tech

2 2 The research agenda in measurement must change to consider measurement solutions which enlist the cooperation of routers. The need is so urgent that the deployment...can be finessed by cooperation between a few key ISPs. There is a rich vein of technical problems, hitherto considered only from an active measurement perspective, for which there can be new and effective...solutions. Varghese and Estan, The Measurement Manifesto

3 3 Accountability and Availability Accountability: Detecting and locating the cause of performance degradations –Proposal: In-band path diagnosis (Orchid) –Need: Carry network traffic with modified packet formats, routers with packet marking capabilities Availability: Maintaining reachability to Internet destinations in the face of failing components –Proposal: Path splicing –Need: Support for running multiple routing protocols in parallel, modified packet formats, etc.

4 4 Data-Plane Accountability Mechanisms to detect and locate sources (and causes of bad behavior) Causes may be benign or malicious –Congestion –Faulty links –Denial of service attack Recourse to avoid faulty or malicious elements –Scalable network support for path diversity

5 5 One Mechanism: Out-of-Band Approach: Send additional probe traffic to capture network conditions –Ping, traceroute, pathchar, etc. Problem: Measured performance may not reflect conditions experienced by data traffic –May not capture transient faults –Probes may be treated differently –Introduces additional probe traffic, which may affect observed performance

6 6 Alternative: In-Band Path Diagnosis Store information about network diagnostics in the packet itself. Advantage: Diagnostic information reflects information actually experienced by data traffic. Challenges –Lost data packets mean lost diagnostics –Distinguishing loss and reordering –Recovering diagnostic information (from the receiver) –Packet marking and storage requirements

7 7 Data-Plane Accountability Problem: Network elements drop packets, fail, and otherwise give rise to poor performance One Solution: In-Band Path Diagnosis Routers keep track of number of packets seen per flow Each router stamps each packet with current flow counter value If current counter value does not equal routers expected packet count for that flow, router marks packet IP Header New Shim Header Transport header High-level Overview

8 8 Detailed Operation Suppose R2 and R3 have each lost one packet Next packet: R2 sees gap in counter value –Marks packet with its ID, updates flow counter value Subsequent packets contain marks for packets further downstream

9 9 Implementation and Evaluation Implementation in Click –Two main elements: ModifyIng, ModifyPkt Deployment on PL-VINI –Evaluation under direct packet drops and induced routing instability

10 10 the entire approach completely disregards the cost of implementation on routers. … The authors must demonstrate that what they are proposing is feasible at e.g., 40Gbps if it is going to be implemented on the fast path… Some Recent Feedback

11 11 Path Splicing: Main Idea Step 1: Run multiple instances of the routing protocol, each with slightly perturbed versions of the configuration Step 2: Allow traffic to switch between instances at any node in the protocol t s Compute multiple forwarding trees per destination. Allow packets to switch slices midstream. Feamster, Motiwala, and Vempala, Path Splicing with Network Slicing

12 12 Perturbations Goal: Each instance provides different paths Mechanism: Each edge is given a weight that is a slightly perturbed version of the original weight –Two schemes: Uniform and degree-based ts 3 3 3 Base Graph ts 3.5 4 5 1.5 1.25 Perturbed Graph

13 13 Network Slicing Goal: Allow multiple instances to co-exist Mechanism: Virtual forwarding tables a t c s b t a t c Slice 1 Slice 2 dstnext-hop

14 14 Path Splicing in Practice Packet has shim header with routing bits Routers use lg(k) bits to index forwarding tables –Shift bits after inspection –Incremental deployment is trivial –Persistent loops cannot occur To access different (or multiple) paths, end systems simply change the forwarding bits

15 15 Design and Implementation Click and Quagga on PL-VINI Control Plane Forwarding Table Daemon Classifier Control Plane Forwarding Table Daemon

16 16 Challenges Can end hosts react quickly enough to recover? –How does the end system find the alternate path? How does splicing perform for other topologies? Deployment Paths –VINI –Overlay –Wireless

17 17 What ramifications does the proposed technique have on state-of-the-art router hardware?...As the routing method is supposed to use in the routers, some traditional metrics (e.g. the influence on throughput or latency) should be used to compare the performance… More Feedback the entire approach completely disregards the cost of implementation on routers. … The authors must demonstrate that what they are proposing is feasible at e.g., 40Gbps if it is going to be implemented on the fast path…

18 18 Questions What amount of realism should a testbed like VINI provide? How to convince –Researchers –Vendors –… Might VINI be a deployment platform, rather than simply a testing platform?

19 19

20 20 Internet Routing Lacks Accountability Control Plane: Messages can be falsified –Misconfiguration: AS 7007, ConEdison route leak –Malice: Spammers stealing address space Data Plane: Data traffic is not guaranteed to travel where the routing protocol indicates –Paths may not perform well –Even if a faulty path cold be located, no recourse This talk: Detecting and isolating faulty elements and nodes. Some discussion about recourse.

21 21 Design Considerations Localization granularity: With what precision should a fault be located? –From within a few ASes to actual network element Statistics granularity: With what precision should statistics be captured? –From coarse, per-flow statistics to per-packet statistics Storage: How much state should be stored, and where should it be stored? –In the router vs. in the packet

22 22 Design Considerations (cont.) Modifications to packet format: Modify packet format, or squeeze data into existing headers? Robustness to malice: Should the scheme be robust in the face of malice? –Off-path: Hosts or routers off of the data path try to disrupt communication –On-path: Malicious hosts or routers on-path may lie

23 23 Analysis of Accuracy Partially accurate: Faulty element identified, but not the correct number of lost packets –Example: Counter overflow Misleading: Network fault is attributed to the incorrect network element –Example: Packets containing information about packet loss are also lost No information: No information reported

24 24 Multipath: Promise and Problems Bad: If any link fails on both paths, s is disconnected from t Want: End systems remain connected unless the underlying graph is disconnected ts

25 25 Reliability Approaches that of Underlying Graph GEANT (Real) and Sprint (Rocketfuel) topologies 1,000 trials p indicates probability edge was removed from base graph Reliability approaches optimal Average stretch is only 1.3 GEANT topology, degree-based perturbations

26 26 Summary and Question Network virtualization to cheat on scalability tradeoffs –Path diversity vs. scalability –Efficiency vs. scalability –Convergence vs. scalability What are the common abstractions, functions, etc. that the substrate should provide? –Slicing –Nesting –Knobs for granularity control –…?


Download ppt "Using VINI to Test New Network Protocols Murtaza Motiwala, Georgia Tech Andy Bavier, Princeton University Nick Feamster, Georgia Tech Santosh Vempala,"

Similar presentations


Ads by Google