Presentation is loading. Please wait.

Presentation is loading. Please wait.

Organisms at different life stages can have vastly different reproduction and mortality rates: Juveniles: often high mortality risk and no reproduction.

Similar presentations


Presentation on theme: "Organisms at different life stages can have vastly different reproduction and mortality rates: Juveniles: often high mortality risk and no reproduction."— Presentation transcript:

1 Organisms at different life stages can have vastly different reproduction and mortality rates: Juveniles: often high mortality risk and no reproduction Mature adults: often low mortality until old age, with reproduction Some juveniles have low mortality.

2 Age of first reproduction: Mouse: 5 weeks Rabbit: 5 months Elephant: 5 years Arabidopsis: 5 weeks Scarlet Oak: 20 years Bamboo: 100 years

3 Maximal life span: Shrews: 1.5 years Human: 122 years Giant Tortoise: 177 years Redwood tree: 2200 years

4 Litter/brood size: Albatross: 1 egg songbirds: 2-5 eggs Pheasants: 8-18 eggs Human: 1 gophers:1 Lion: 3-4 Wolf 4-6 Pig: 10 Sea slug: up to 500,000 eggs Saguaro 10,000s of seeds Coconut: 100 seeds

5 Life cycle of a fir

6 Life cycles can be quite complex: Sexual adult larvae, 1 st instar egg pupae larvae, 3 rd instar larvae, 2 nd instar oviposition 1 st molt 2 nd molt hatching diapause, pupation emergence

7 Organize all relevant information about birth and death rates as a function of age; Provide the data for answering questions, like: What is the average number of offspring that an organism produces in its life time? What is the average generation time of a population? What is the growth rate of the entire population? Life Tables:

8 What is Life Table Analysis used for? Population management: 1.If the goal is to destroy a population, which life history stage should we target to get the most bang for the buck? 2.If the goal is to conserve a population at risk, which life history stage should get the most protection? 3.If the goal is sustainable harvest: which life history stages should be exempted from being killed?

9 Life Tables represent “life histories” Life history: the timing of life cycle events, particularly as relating to growth, fertility and death.

10 Life tables contain two sorts of data: Fecundity schedules: Survivorship schedules: The average reproductive output of individuals as a function of the age of an individual. The probabilities of surviving from birth to all ages.

11 Two types of fecundity schedules: Semelparous (in animals) or monocarpic (in plants) reproduction: when organisms reproduce only once in their lifetime. Iteroparous (in animals) or polycarpic (in plants) reproduction: when organisms reproduce more than once in their lifetime. Marine salmon Century plant ElephantCherry tree

12 Three types of survivorship schedules: In plants we distinguish: annuals, biennials, perennials. An annual: sunflower A biennial: spinach A perennial: sequoia

13 Age ln Survivorship Type I: mammals with much parental care in a low risk environment. Three types of survivorship curves: Type II: (rare) Individuals of all ages have the same probability of dying. Type III: Species with many, small and vulnerable young. This is equivalent to exponential decay: constant mortality risk throughout a lifetime

14 How does one collect age-specific survivorship and fecundity information that is representative of an entire population? HORIZONTAL METHOD: follow the fate of a group of individuals all born at the same time (= a cohort) record all births and deaths until the last individual died equivalent to “longitudinal studies” in medical research preferred method but difficult to conduct VERTICAL METHOD: examine the age and birth rate of a representative, random sample of the population at one point in time reconstruct age-specific mortalities from age distributions equivalent to “cross-sectional studies” in medical research preferred method but difficult to conduct

15 Example of horizontal study: At t 0 : 1000 eggs 1 week later: 400 small tadpoles 6 months later: 50 mature frogs 4 weeks later: 100 immature frogs 2 weeks later: 200 large tadpoles 1 year later: 10 mature frogs

16 Book keeping: (assuming post-breeding census) Life history interval Age (x) x = 1x = 4x = 3x = 2x = 5 x=0 BIRTH DEATH OF OLDEST INDIVIDUAL S(0) S(1)S(2)S(3) S(4)S(5) = 0 S(x): the number of survivors at the beginning of age x

17 Book keeping: (assuming post-breeding census) Life history interval Age (x) x = 1x = 4x = 3x = 2x = 5 x=0 S(0) S(1)S(2)S(3) S(4)S(5) = 0 newborns b(0)b(1)b(2)b(3)b(4) b(x): offspring produced per female during the interval from x to x+1 and still alive at the end of the interval.

18 Life Table: xS(x)b(x) 010000 18002 24003 31001 400 No of survivors to start of interval Average capita fecundity of survivors during the interval Age at start of interval

19 Life Table: xS(x)b(x)l(x) 010000 18002 24003 31001 400 1 0.8 0.1 0 0.4 Step 1: Calculate survivorship at the beginning of each age:

20 Life Table: xS(x)b(x)l(x)g(x) 0100001 180020.8 240030.4 310010.1 4000 0.8 0.5 0 0.25 Step 2: Calculate survivorship from one age class to the next:

21 Life Table: xS(x)b(x)l(x)g(x) l(x)b(x) 01000010.8 180020.80.5 240030.40.25 310010.10 4000 0 1.6 0.1 1.2  = 2.9 R 0 = 2.9 Step 3: Calculate the net reproductive rate of an individual over its lifetime:

22 The average contribution of an individual to the future generation. Partitioning overall population growth rates into contributions made by members of specific age classes is very useful for purposes of population genetics and population management. Definition of Reproductive Value:

23 Life Table: xS(x)b(x)l(x)g(x) l(x)b(x) 01000010.8 180020.80.5 240030.40.25 310010.10 4000 0 1.6 0.1 1.2  = 2.9 R 0 = 2.9 Step 3: Calculate the net reproductive rate of an individual over its lifetime:

24 Life Table: xS(x)b(x)l(x)g(x) l(x)b(x)l(x)b(x)x 01000010.80 180020.80.51.6 240030.40.251.2 310010.10 4000  = 2.9 0 1.6 0.3 2.4  = 4.3 R 0 = 2.9 G = 1.48 yrs Step 4: Calculate the generation time:

25 The average age of breeding females (e.g. of new- born’s mothers) It is the average length of time between successive generations. Definition of Generation Time:

26 Life Table: xS(x)b(x)l(x)g(x) l(x)b(x)l(x)b(x)x 01000010.800 180020.80.51.6 240030.40.251.22.4 310010.10 0.3 4000  = 2.9  = 4.3 R 0 = 2.9 G = 1.48 yrs r = 0.72 yrs -1 Step 5: Estimate the population growth rate:

27 Plug & Play Excel Worksheets: A life table

28 Life Table Analysis makes many assumptions: 1.Mortality and fecundity depend only on the age of the organism. 2.Age-specific mortality and fecundity are constant through time. 3.To determine the population growth rate a very specific age structure must be assumed: the stable age distribution.

29 The age structure of a population refers to the way a population is divided among different age classes. The age structure is often represented in an age structure pyramid. is is often It is the average length of time between successive generations. Definition of Age Structure:

30 It is a relative age distribution of a population that will not change over time. The growth rate of a population can be estimated by life table analysis only if the population has a stable age structure. Definition of Stable Age Structure:

31

32 ageIndividuals (years)left in cohortb(x)l(x)l(x)b(x)l(x)b(x)x 010000 12003 21506 31206 4704 5502 600 Life Table for feral cats in San Marcos 1.Determine the population’s r-value 2.Assume that a spay/neuter program prevents 50% of cat pregnancies. What would the r be? 3.What is the likely long-term consequence of the spay/neuter program?

33 Summary: 1.Life tables organize information about fecundity and mortality schedules for populations. They usually only track females. 2.There are mathematical fomulae that one can use to calculate, based on life tables,  stable age distributions of populations  population growth rates  the average generation times  the reproductive values of females of a certain age. 3.This analysis has application in virtually any task of population control, including the protection of endangered species or the control of invasive species, and is basic to understand the evolution of life history strategies.


Download ppt "Organisms at different life stages can have vastly different reproduction and mortality rates: Juveniles: often high mortality risk and no reproduction."

Similar presentations


Ads by Google