Presentation is loading. Please wait.

Presentation is loading. Please wait.

“Future Directions” for Wireless Technology www.winlab.rutgers.eduwww.winlab.rutgers.edu & www.orbit-lab.org.

Similar presentations


Presentation on theme: "“Future Directions” for Wireless Technology www.winlab.rutgers.eduwww.winlab.rutgers.edu & www.orbit-lab.org."— Presentation transcript:

1 “Future Directions” for Wireless Technology www.winlab.rutgers.eduwww.winlab.rutgers.edu & www.orbit-lab.org

2 Some History – Failure of 3G Reality Bites: and they still don’t get it …

3 Some History – Success of 802.11

4 802.11 Problem: Alphabet soup

5 802.11 Standards

6 And how do you get in? Create more “standards” –RFID ~ 10-1000 b/sec –ZigBee (802.15.4) ~ 250 Kb/s –Bluetooth ~ 1 Mb/sec –Wi-Max (802.16) –802.11n –3G (they are still trying) –4G? Big problem: how to verify claims?

7 Orbit Project Rationale Wireless testbeds motivated by: –cost & time needed to develop experimental prototypes –need for reproducible protocol evaluations –large-scale system studies (...emergent behavior) –growing importance of cross-layer protocol studies –creation of communities for wireless network research ORBIT: open-access multi-user facility for experimental wireless networking research primarily in unlicensed bands –~24/7 service facility with remote access –open interfaces for flexible layer 2,3 & cross-layer protocols –extensive measurements at PHY, MAC and Net layers –support for wide range of radio system scenarios

8 Orbit ORBIT consists of radio grid emulator + field trial network Emulator used for detailed protocol evaluations in reproducible complex radio environments Field trial network for further real-world evaluation & application trials

9 Orbit co-PI’s WINLAB, Rutgers University –Dipankar Raychaudhuri –Max Ott –Ivan Seskar –Wade Trappe –Manish Parashar –Yanyong Zhang Columbia University –Henning Schulzrinne Princeton University –Hisashi Kobayashi IBM Research –Arup Acharya Lucent Bell Labs –Sanjoy Paul Thomson –Kumar Ramaswamy

10 Urban 300 meters 500 meters Suburban 20 meters ORBIT Testbed 20 meters Hallway Office 30 meters Radio Mapping Algorithm

11 The Grid: Architecture 80 ft ( 20 nodes ) 70 ft m ( 20 nodes ) Control switch Data switch Application Servers (User applications/ Delay nodes/ Mobility Controllers / Mobile Nodes) Internet VPN Gateway / Firewall Back-end servers Front-end Servers Gigabit backbone VPN Gateway to Wide-Area Testbed SA 1 SA 2 SA P IS 1 IS 2 IS Q RF/Spectrum MeasurementsInterference Sources

12 The Grid: Hardware 512 MB RAM Gigabit Ethernet (control) Gigabit Ethernet (data) Atheros miniPCI 802.11 a/b/g 22.1Mhz 1 Ghz pwr/reset volt/temp 20 GB DISK Serial Console 110 VAC RJ11 NodeIdBox +5v standby Power Supply CPU VIA C3 1Ghz Atheros miniPCI 802.11 a/b/g Bluetooth USB CPU Rabbit Semi RCM3700 10 BaseT Ethernet (CM)

13 RF Interference grid Number of transmitter antennas providing spatial distribution of interference sources (BW = 40 MHz, f0=250 KHz – 6 GHz) Ideally @ each antenna linear combination of 2-8 sources (cost issue) Variety of interference types (W-CDMA, cdma2000, 1xEV- DO/DV, TD-SCDMA, cdmaOne, GSM/EDGE, GPRS/EGPRS, Bluetooth, GPS, enhanced multitone, NPR, AWGN, or up to 8 sec of arbitrary waveform generation) Agilent ESG … … Agilent ESG Agilent ESG +

14 ORBIT Field trial (Phase 2) Requires ruggedized outdoor ready equipment (suggesting of the shelf technologies) Standard nodes used in dual role of mobile AP/mobile nodes deployed on busses Where possible connected to wired infrastructure; otherwise use of second radio interface for mesh type networking/wide area access

15 Experiment Support Architecture System Control Measure Deploy & Configure Experimenter Results Definition

16 Defining an Experiment

17 Formulation of Link SNR Mapping STEP 1 Modeling Link SNR of Real Environments Prototype network (AP, Ad Hoc, etc.) Spatial distribution of terminals Empirical/Analytical path loss model Setting dedicated noise-like sources Setting locations of grid nodes Setting transmission powers of nodes Fidelity of Grid SINR to Link SNR STEP 2 Configuring Grid SINR

18 OML: Measurement Framework

19 Experiment Definition Experiment.name = "tutorial-1" Experiment.project = "Orbit::Tutorial" Experiment.startMode = Experiment::REBOOT # # Define nodes used in experiment # node([2, 3], :sender) {|n| n.prototype("http://apps.orbit-lab.org/sender", { :if => Node::W0_IF, :packetSize => Experiment.parameter("packetSize"), :rate => Experiment.parameter("rate") }) } node([3, 4]) {|n| n.prototype("http://apps.orbit-lab.org/receiver", {:if => Node::W0_IF}) } # # Configure environment # node("/*/*").net.w0 {|n| n.essid = "HelloWorld" n.mode = "ad-hoc" n.channel = 1 n.xmitPower = 1 ;# What is 1? n.bitrate = "11Mbps" # Force single rate n.ip = "%10.0.%x.%y" } # Start experiment whenReady {|e, n| p.packetSize = 1024 p.rate = 250 e.sleep 5.0 e.done }

20 Prototype Definition p = Prototype.create("http://apps.orbit-lab.org/sender") p.name = "Sender" p.description = "Nodes which send a stream of packets" p.addParameter(:if, "Name of interface to use", Node::W0_IF) p.addParameter(:packetSize, "Payload length of outgoing packets", 1000) p.addParameter(:rate, "Rate to send", 1000) p.addParameter(:channel, "Channel to send on", 1) p.addParameter(:useSocket, "If true use socket, otherwise use libmac for transport", true) genny = p.addApplication(:gennySender, "http://apps.orbit-lab.org/gennySender#gennySender") genny.bindProperty(:interface_name, :if) genny.bindProperty(:rate) genny.bindProperty(:payload_length, :packetSize) genny.bindProperty(:use_socket, :useSocket) genny.addMeasurement(:group3, Filter::SAMPLE, {Filter::SAMPLE_SIZE => 100}, [ ["offered_load", Filter::MEAN] ] ) Sender http://apps.orbit-lab.org/sender Nodes which send a stream of packets Payload length of outgoing packets 1000 … … … …

21 Analyzing Experiments function nsf(dbServer, dbUser, dbPW, database); % Part where we retrieve data from the database; mysql('open',dbServer, dbUser, dbPW); mysql('use', database); output = struct('time',[],'thr_all',[],'node',[]); [output.time, output.thr_all, output.node] = mysql('select timestamp, throughput, node_id from group2'); [thru1_4, time1_4, thru3_1, time3_1] = sort_mysql(output); % Finally, the plotting part subplot(2,1,1); plot(time1_4, thru1_4, '-*'); title('Throughput On Obstructed Link'); xlabel('Time (sec)'); ylabel('Throuhput (bps)'); grid on; subplot(2,1,2); plot(time3_1, thru3_1, '-*'); title('Throughput On Monitor Node'); xlabel('Time (sec)'); ylabel('Throuhput (bps)'); grid on;

22 Progress Installed Production Nodes Scaled to 64 Nodes Added Bluetooth Semi-automated calibration (+/- 10db) Web site is up Supporting “Click” Started with external experimenter (Columbia) Started exploring mobility & NS-2 integration V2 of node handler & OML in beta 5 Papers accepted

23 Future Extend Beta testers to industry EWPs Move into new building (ribbon cutting done) Explore new radios (already have Zigbee, Mote, GNU radio) Install to 400 Interested? Join mailing list www.orbit-lab.org/community/mailingLists

24 www.orbit-lab.org


Download ppt "“Future Directions” for Wireless Technology www.winlab.rutgers.eduwww.winlab.rutgers.edu & www.orbit-lab.org."

Similar presentations


Ads by Google