Download presentation
1
DC to AC converter (Inverter)
vg1 DC to AC converter (Inverter) Single phase t T/2 T vg2 t T/2 T Dead band = 1 μs Q1 Q2 Vg2 Vg1 Vs C RL D 0.5Vs VL IL VL, IL n=∞ vL=Σn=1,3,5,.. (2 Vs) / (nΠ) × sin(nωt) Vs/2 Vn t T/2 T -Vs/2 Q1 Q2 Q1 VLrms= Vs / 2 VL1= (2Vs) / (√2Π) 1 2 3 4 5 6 7 8 n Harmonic contents in the output voltage
2
Heavily inductive load (RL → 0)
T/2 T Vs/2 -Vs/2 vL Q1 Q2 iL D1 D2 Heavily inductive load (RL → 0) Q1 Q2 Vg2 Vg1 Vs C RL D1 D2 0.5Vs VL IL LL R-L load iL= Σ (2Vs) / [ nΠ √ (R2+n2ω2L2) ] × sin (nωt - Θn) Θn= tan-1(nωL / R)
3
Performance Parameters
HFn Harmonic Factor for the nth harmonic HFn= (VLn) / VL for n > 1 THD Total Harmonic Distortion The harmonic voltage Vh ∞ THD = 1 / VL1 ( Σ V2n ) 0.5 n=2, 3, 4,… ∞ Vh= ( Σ VLn2 ) 0.5 = ( VLrms2 – VL12 )0.5 n= 3, 5, 7, .. DF Distortion Factor ∞5 DF = 1 / VL1 [ Σ ( VLn / n2 )2 ] 0.5 n=2, 3, … The Distortion Factor of the nth harmonic = VLn / ( VL1 n2) for n > 1 Lowest Order Harmonic LOH is the harmonic component that is the closest to the fundamental and its amplitude Is ≥ 3% of the fundamental
4
a) The rms value of the load fundamental voltage. b) The output power.
Vs= 48V R= 2.4 Ω Calculate: a) The rms value of the load fundamental voltage. b) The output power. c) The average and peak current in the transistor. d) The THD, DF, the HF and DF of the LOH. a) vL1 = (2Vs) / Π × sin ( ωt) VL1rms = ( 2 × 48 ) / ( Π × √2 ) = 21.6 V VLrms= 0.5 Vs = 24 V PL= (VLrms)2 / R = 242 / 2.4 = 240 W c) iQ1 t T/2 T iQ2 Peak current in each transistor = 24/2.4 = 10A Average current in each transistor = 5 A d) Vh= ( 242 – )0.5 = V THD = / 21.6 = VL3= 21.6/3 = 7.2 V VL5= 21.6/5 = 4.32 V VL7= 21.6/7 = V DF = 1/21.6 ×{ [ 7.2/32]2+ [4.32/52]2 +[3.086/72] 2}0.5 = 1/21.6 ×{ }0.5 = Q1 Q2 Vg2 Vg1 Vs C RL D1 D2 0.5Vs VL IL LL
5
The LOH = 3rd harmonic HF3= 1/3 = DF3= /32 = note that VL3= which is > so LOH =3
6
The H-bridge single phase inverter
Vg1, Vg2 The H-bridge single phase inverter Q3 Q2 Vg2 Vg3 Vs RL D VL IL Q1 Q4 Vg1 Vg4 t T/2 T Vg3, Vg4 t T/2 T Dead band = 1 μs VL, IL n=∞ vL=Σn=1,3,5,.. (4 Vs) / (nΠ) × sin(nωt) Vs Vn t T/2 T -Vs Q1, Q2 Q3, Q4 Q1, Q2 VLrms= Vs VL1= (4Vs) / (√2Π) 1 2 3 4 5 6 7 8 n Harmonic contents in the output voltage
7
a) The rms value of the load fundamental voltage. b) The output power.
Calculate: a) The rms value of the load fundamental voltage. b) The output power. c) The average and peak current in the transistor. d) The THD, DF, the HF and DF of the LOH. Q3 Q2 Vg2 Vg3 Vs RL D VL IL Q1 Q4 Vg1 Vg4 a) vL1 = (4Vs) / Π × sin ( ωt) VL1rms = ( 4 × 48 ) / ( Π × √2 ) = 43.2 V VLrms= Vs = 48 V PL= (VLrms)2 / R = 482 / 2.4 = 960 W c) Vs= 48V R= 2.4 Ω iQ1, iQ2 iQ3, iQ4 t t T/2 T T/2 T Peak current in each transistor = 48/2.4 = 20A Average current in each transistor =10 A DF = 1/43.2 ×{ [ 14.4/32]2+ [8.64/52]2 +[6.17/72] 2}0.5 = 1/43.2 ×{ }0.5 = (same) VL3= 43.2/3 = 14.4 V VL5= 43.2/5 = 8.64 V VL7= 43.2/7 = 6.17 V d) Vh= (482 – )0.5 = V THD = / 43.2 = (same)
8
Voltage is twice that of the 2-transistor circuit.
LOH = 3rd harmonic HF3 = 1/3 DF3= 1/(3×32) = (same) note that VL3= which is > 0.03×VL1 so LOH =3 The quality of the output voltage is the same as for the 2-transistor circuit however, the H bridge inverter the output power is 4 times higher and the fundamental output Voltage is twice that of the 2-transistor circuit.
9
The H-bridge inverter shown in figure has an
RLC load with R=10Ω, L=31.5mH, C=112μF. The inverter frequency is 60 Hz and the dc input Voltage is Vs=220V. Express the instantaneous load current in Fourrier series. Calculate the rms load current at the fundamental frequency. c) Calculate the THD of the load current. d) Calculate the total power absorbed by the load as well as the fundamental power. e) Calculate the average dc current drawn from the supply. f) Calculate the rms and the peak current of each transistor. Q3 Q2 Vg2 Vg3 Vs R D VL IL Q1 Q4 Vg1 Vg4 L C
10
Three-phase inverters
120o conduction Three-phase inverters 180o conduction 120o conduction Vs Q1 Q4 Vg1 Vg4 D1 D4 a Q3 Q6 Vg3 Vg6 D3 D6 b Q5 Q2 Vg5 Vg2 D5 D2 c R @ any time only 2 transistors are conducting: 1 in an upper leg 1 in another lower leg
11
ωt 60o vG1 vG2 vG3 vG4 vG5 vG6
12
For 0 ≤ ωt < 60o Vs a b c For 60o ≤ ωt < 120o
n’ For 240o ≤ ωt < 300o For 300o ≤ ωt < 360o
13
ωt 60o vab vbc vca van’ vbn’ Vcn’ CV Vs 0.5Vs - 0.5Vs -Vs -0.5Vs
14
180o conduction ( 3 transistors are conducting at any time)
vG1 vG2 vG3 vG4 vG5 vG6 180o conduction ( 3 transistors are conducting at any time)
15
For 0 ≤ ωt < 60o For 60o ≤ ωt < 120o For 120o ≤ ωt < 180o Vs
a b c n’ R Vs a b c n’ R Vs a b c n’ For 240o ≤ ωt < 300o For 300o ≤ ωt < 360o For 180o ≤ ωt < 240o R n’ a R a R R b R n’ b a n’ R c b R c c R R R Vs Vs Vs
16
ωt 60o vab vbc vca van’ vbn’ Vcn’ CV Vs -Vs ⅓Vs ⅔Vs
18
Voltage control techniques of single phase inverters
Single pulse width modulation Multiple pulse width modulation Π 2Π ωt VL Π/2 3Π/2 δ -Vs Vs VL Vs δ δ δ 7Π/6 3Π/2 11Π/6 ωt Π/6 Π/3 Π/2 2Π/3 5Π/6 Π 4Π/3 5Π/3 2Π αm=2 δ δ δ -Vs P= # of pulses per half cycle P=3 vL= Σn=1,3,5,.. (4Vs / nΠ) sin(nδ/2) sin(nωt) ∞ Decreases DF significantly VLrms= Vs √(δ/Π) vL= Σn=1, 3, ..Σm=1{4Vs /(nΠ) sin{ nδ/4 [ sin n(αm+3δ/4) – sin n(Π+αm+δ/4) ] }× sin(nωt) ∞ 2p VLrms= Vs √ (pδ/Π) δ = M T/ (2p) Where M is the amplitude modulation index 0 ≤ M ≤ 1
19
Sinusoidal Pulse Width Modulation
Ac Ar Reference waveform MA = Amplitude Modulation Index Ar MA = _______ Ac MF = Frequency Modulation Index carrier frequency MF = (= 5) reference frequency Carrier waveform fC = carrier frequency fR = reference frequency 0 ≤ MA ≤ 1 If MA > 1 over-modulation
20
if MF is an odd number, quarter-wave symmetry
is obtained and no even harmonics are present in the output voltage. α1 ωt α2 For a 3-phase inverter, MF should be an odd triplen number 180o- α1 180o – α2 SPWM reduces greatly the DF U1 Vs <1 ωt over-modulation MA -Vs 1
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.