Download presentation
Presentation is loading. Please wait.
Published byRoberta Richardson Modified over 9 years ago
1
I2RP/OPTIMA Optimal Personal Interface by Man-Imitating Agents Artificial intelligence & Cognitive Engineering Institute, University of Groningen, Grote Kruisstraat 2/1, 9712 TS Groningen, the Netherlands, http://www.ai.rug.nl drs. Judith D.M. Grob (PhD student) dr. Niels A. Taatgen (supervisor) dr. Lambert Schomaker (promotor) Project Objective Current Work Future Plans Problem With software becoming more and more complex, software design geared towards the ‘average user’ is insufficient, as different users have different needs. Users differ in: goals, experience, interests, knowledge. Possible Solution: Let the system maintain a cognitive model of the user, which performs the role of an intelligent agent that can inform the interface on user-relevant adaptations. Possible areas of adaptation: help function display of menu’s Three research phases: References Sugar Factory Experiment (Berry & Broadbent, 1984) Task: Keep during two phases of 40 trials, the production P of a simulated sugar factory at a target value T, by allocating the right number of workers W to the job. Findings: Participants are better at reaching 3 than 9 Implicit learning: participants improve but cannot verbalise knowledge Transfer: change of target doesn’t effect learning Two Computational Models (in ACT-R) 634.000.002 (I2RP) Instance Model (Taatgen & Wallach, 2002) Model stores instances of experiences with trials. It retrieves these as examples to solve new trials. Pro: Simple model Con: Cannot explain transfer Competing Strategies (Fum & Stocco, unpublished) Model has 6 competing strategies. The successful ones are used more frequent over time. Pro: Models all effects Con: Task-dependent strategies Our Analogy Model (in ACT-R) Contains simple, task independent analogy rules, which search for common patterns e.g. repetition of values. Model applies analogy rules to instances retrieved from memory and thus forms task-specific strategies to solve the task. Findings: Learning Difference between targets But: No transfer Values are too high Next: Why doesn’t the model apply newly formed rules more often? Let model forget through decaying activation in memory Experiment with relative representations System Dynamics: P t = 2 W t - P t-1 + Random Factor (-1/0/1) Objective “To come to a methodology for the development of adaptive user interfaces, using the Cognitive Architecture ACT-R (Anderson, 2002) as a modeling tool” Gain a better understanding of what happens when people get more skilled at operating a complex system, such as a software program. Anderson, J. R. (2002). Spanning seven orders of magnitude: A challenge for cognitive modeling. Cognitive Science, 26. Berry, D.C., & Broadbent, D.E. (1984). On the relationship between task performance and associated verbalizable knowledge. The Quarterly Journal of Experimental Psychology, 36, 209-231 Fum, D. & Stocco, A. (unpublished). Instance vs. rule based learning in controlling a dynamic system. Submitted to ICCM 2003. Taatgen, N.A., & Wallach, D. (2002). Whether skill acquisition is rule or instance based is determined by the structure of the task. Cognitive Science Quarterly, 2, 163-204.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.