Download presentation
1
LPC2148 Programming Using BLUEBOARD
Enabling the ARM Learning in INDIA
2
AGENDA LPC214x Block Diagram Pin Diagram BlueBoard Schematic
PIN Select Block General Purpose Input/Output First Program Enabling the ARM Learning in INDIA
3
Bus Structure In LPC2148 three types of busses are used to connect the core with other peripherals on chip. Local Bus to connect the onchip memory controllers and fast GPIO’s AMBA Advance High Performance Bus (AHB) for interrupt controller VLSI Peripheral Bus (VPB) for other onchip peripherals. AHB acts as a bridge for VPB. VPB is mainly meant for connect slower peripherals then that of processor. VPB can dive the peripherals at ¼ CPU clock frequency. Enabling the ARM Learning in INDIA
4
Bus Structure Enabling the ARM Learning in INDIA
5
Memory MAP To access any peripheral we need its address. The entire address space can be divided in to several sections. Enabling the ARM Learning in INDIA
6
Memory MAP Enabling the ARM Learning in INDIA
7
Memory Access Module The MAM block in the LPC2148 maximizes the performance of the ARM processor when it is running code in Flash memory, Two general methods for achieving code execution performance. Using RAM for code execution. Using Cache memory. Enabling the ARM Learning in INDIA
8
Memory Access Module The MAM block in the LPC2148
Enabling the ARM Learning in INDIA
9
Bootloader A small piece of software executed after every reset. This software is used to load the new user program in to the flash memory using any communication channel like UART, USB, Ethernet or CAN. For LPC2000 Series the Bootlader can be activated by maintaining low level on P0.14 while reset. Enabling the ARM Learning in INDIA
10
Bootloader ISP Philips microcontroller have a great feature called ISP (In System Programming). It enables the user to flash the microcontroller with an ease. In LPC2148 the ISP mode can be activated by maintaining low level on P0.14 while reset. Enabling the ARM Learning in INDIA
11
Boot Process Enabling the ARM Learning in INDIA
12
ISP Commands Enabling the ARM Learning in INDIA
13
Command Code in Decimals
IAP In-Application (IAP) programming is performing erase and write operation on the on-chip flash memory, as directed by the end-user application code. The bootloader code provides API to access flash memory from the user program. The API are called using their codes. IAP Command Command Code in Decimals Prepare sector(s) for write operation 50 Copy RAM to Flash 51 Erase sector(s) 52 Blank check sector(s) 53 Read Part ID 54 Read Boot code version 55 Compare 56 Reinvoke ISP 57 Enabling the ARM Learning in INDIA
14
Phased Lock Loop PLL is a closed loop control system to generate high frequency by multiplying with given factor to the input frequency. Div Fout Fin Basic PLL Block Diagram Mul In LPC2148 microcontrollers there are 2 PLLs which provides programmable frequencies to the CPU and USB system. The input clock frequency to PLL0 and PLL1 is in the range of 10MHz to 25 MHz only. It is multiplied up the range of 10MHz to 60MHz for CCLK and 48MHz for the USB cock using Current Controlled Oscillator (CCO). Enabling the ARM Learning in INDIA
15
PLL Programming PLL Registers
Gen. Name Description PLL0 PLL1 PLLCON PLL Control Register. Holding register for updating PLL control bits 0xE01F C080 PLL0CON 0xE01F C0A0 PLL1CON PLLCFG PLL Configuration Register. Holding register for updating PLL configuration values 0 0xE01F C084 PLL0CFG 0xE01F C0A4 PLL1CFG PLLSTAT PLL Status Register. Read-back register for PLL control and configuration information 0xE01F C088 PLL0STAT 0xE01F C0A8 PLL1STAT PLLFEED PLL Feed Register. This register enables loading of the PLL control and configuration information from the PLLCON and PLLCFG registers into the shadow registers that actually affect PLL operation. 0xE01F C08C PLL0FEED 0xE01F C0AC PLL1FEED Detail Register Bits LPC214X User Manual Page 27 Enabling the ARM Learning in INDIA
16
PLL Programming Programming Steps:
Select the desired operating frequency for your system ( Processor operating frequency) CCLK. Check the oscillator connected to the controller on board. (FOSC) Calculate the value of PLL multiplier “M”. CCLK = M × FOSC Find the value of PLL Divider “P” in such a way that is in the range of 156 MHz to 320 MHz < FCCO < 320 = CCLK x 2 x P Write the values PLLCON and PLLCFG. Write the PLLFEED Values 0xAA and 0x55. Wait for PLL to lock. Connect the PLL. Enabling the ARM Learning in INDIA
17
VBP Divider VLSI Bus connected to various peripherals can be operated at different speeds using the VBP Divider. The VPB Divider serves two purposes: 1. Provides peripherals with desired PCLK via VPB bus, the VPB bus may be slowed down to one half or one fourth of the processor clock rate 2. VPB Divider allow power savings when an application does not require any peripherals to run at the full processor rate. Enabling the ARM Learning in INDIA
18
VBP Divider VPBDIV registers least 2 significant bits can be changed for desired PCLK Peripherals on LPC2000 series can run at the full 60 MHz clock. Enabling the ARM Learning in INDIA
19
POWER CONTROL LPC214x support two reduced power modes Idle mode and Power-down mode. Idle Mode: The CPU stops execution is suspended until a Reset or Interrupt from peripheral occurs. Peripheral runs in idle mode and may generate interrupts to resume the CPU execution. Power-Down Mode: The oscillator is shutdown and the chip receives no internal clocks. All the information of current execution state is preserved in this mode. A Reset signal or External Interrupt can terminate the power-down mode. PCON Register: Bit 0 : When set to 1, causes the processor clock to be stopped. Bit 1 : When set to 1, causes the on-chip clock to be stopped. In LPC214x the power down mode have dependency on USB Block Enabling the ARM Learning in INDIA
20
Peripheral Power Control
LPC2000 peripherals can be turned of individually using the PCONP Register bits setting, to save the power. Few peripherals like GPIO, Watchdog timer, Pin connect block and System Control block cannot be turned off. After reset the PCONP contains the value to enable all peripherals, so no need to configure PCONP bits in-order to use any peripheral. Page 37 LPC2148 User Manual Enabling the ARM Learning in INDIA
21
INTERRUPT SYSTEM Interrupt System
• ARM PrimeCell™ Vectored Interrupt Controller • 32 interrupt request inputs • 16 vectored IRQ interrupts • 16 priority levels dynamically assigned to interrupt requests • Software interrupt generation Enabling the ARM Learning in INDIA
22
? Enabling the ARM Learning in INDIA
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.