Download presentation
Presentation is loading. Please wait.
Published byAnastasia Warren Modified over 9 years ago
1
Ladislav Nedbal Department of Biological Dynamics Institute of Systems Biology & Ecology CAS Zámek 136, 37333 Nové Hrady, Czech Republic
2
Solar biofuels from microorganisms, why not yet? 0 < (E FUEL – E M ) / m 2.year = ( E E solar - E M ) / m 2.year E M …construction, maintenance, fertilizers, pumping, harvesting, processing, refining, distribution…) E M … biological and technological constraint (≈ € !!!) E solar … geographical constraint CROPCornSoybeanCanolaJatrophaCoconutOil palmMicroalgae OIL YIELD (l/ha) 172446119018922689595013690058700 70% and 30% oil in wet biomass (adapted from Y.Chisti (2007) Biotechnology Advances 25: 294-306) RegionSW USANE USAUK Lipid content0.50.330.50.330.50.33 Biodiesel, gal/m 2 /year 1.240.821.060.710.770.52 With yields ≈ 1-2 gal(oil) / m 2 / year and oil price < $3 / gal: the capital cost depreciation < several $ / year
3
Solar biofuels from microorganisms … continued … 0 < (E FUEL – E M ) / m 2.year = ( E E solar - E M ) / m 2.year E M …construction, maintenance, fertilizers, pumping, harvesting, processing, refining, distribution…) E M … biological and technological constraint (≈ € !!!) E solar … geographical constraint E … thermodynamic, biological a technological constraint Irradiance CO 2 assimilation Used Lost Solutions: - Decrease the antenna - Dilute the light technologically in space - Dilute the light technologically in time
4
High density algal cultures
5
Cell light dynamics in dense algal cultures
6
Light dynamics in dense algal cultures A. B. C.
7
Constant mean irradiance, variable period & L:D ratio B Chlorella vulgaris 500 E.m -2.s -1
8
Constant incident irradiance, variable period & L:D ratio A Chlorella vulgaris I 0 =2000 E.m -2.s -1 1ms continuous 100ms 1s
9
Constant incident irradiance, variable L:D ratio A Chlorella vulgaris 10 ms period 2400 E.m -2.s -1 1200 700 250 130
10
Constant incident irradiance, constant L:D, variable period Chlorella vulgaris L:D=1:1, I 0 =2000 E.m -2.s -1 2400 E.m -2.s -1 1200 700 250 130 T
11
Rate of photoinhibition L:D=1:1, I 0 =2000 E.m -2.s -1 T= 10ms Cont. I 0 =1000 E.m -2.s -1
12
Electron transfer
13
Conclusions for flashing light effect in the ms-range: 1) per area yield increase in dense cultures & high irradiance 2) reduction of photoinhibition rates
15
Harmonic light forcing with periods > 1 s harmonic light input non-linear output 2 amplitude T offset
16
Simulation tool Nedbal et al.(2008) Biotechnology & Bioengineering 100: 902-910.
17
Non-linear fluorescence response Continuous lightOscillating light Nedbal et al. (2003) Biochim.Biophys.Acta: Bioenergetics 1607: 5-17 Nedbal, et al. (2005) Photosynth.Res. 84: 99–106
18
Non-linear response in dynamic light
19
Non-linear response caused by regulation
22
Non-linear response in growth Constant light T=10s T=100s Constant light
24
Metabolic rhythms of the cyanobacterium Cyanothece sp. ATCC 51142 correlate with modeled dynamics of circadian clock.
25
Different L/D ratio.
27
Model prediction for circadian Kai clock confronted with metabolic dynamics in 12L: 12D
28
Model prediction for circadian Kai clock in 6L: 6D
29
Model prediction in 6L: 6D qualitatively confirmed by experiment
30
Modeling Tools
31
Models are able to simulate the non-linearity … poorly
32
Comprehensive modeling space, SBML, MIRIAM
33
…. soon to be continued
34
Thank you for your attention! Collaborators: Photon Systems Instruments, Brno, CZ Jan Červený, Ondra Komárek, Víťa Březina from Nové Hrady, CZ Fusheng Xiong, Vláďa Tichý from Třeboň, CZ Johann Grobbelaar, UOFS Bloemfontain, S.Africa Himadri Pakrasi, WUSTL, St.Louis, USA Govindjee, UIUC, Urbana, USA Agu Laisk, Tartu, Estonia Conrad Mullineaux, London, UK
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.