Download presentation
Presentation is loading. Please wait.
Published byEdwin Cox Modified over 9 years ago
1
Introduction to Nanomechanics (Spring 2012) Martino Poggio
2
Cooling Mechanical Resonators Achieve ultimate force resolution Approach the quantum regime Measure mechanical superpositions and coherences 11.04.2012Introduction to Nanomechanics2
3
Superposition & Coherence? Introduction to Nanomechanics311.04.2012
4
Strategies for Cooling Resonators “Brute force”: High resonance frequencies & low reservoir temperatures Damping mechanical motion Cavity cooling Introduction to Nanomechanics411.04.2012
5
Introduction to Nanomechanics5 T (K) x rms (x zp ) 11.04.2012
6
“Brute Force” Introduction to Nanomechanics611.04.2012
7
Real Numbers (T = 1 K) Top-down doubly clamped beams (Schwab) m = 10 -15 kg = 2 x 10 MHz x th = 2 x 10 -12 m x zp = 3 x 10 -14 m Introduction to Nanomechanics711.04.2012
8
Real Numbers (T = 1 K) Bottom-up doubly clamped “clean” nanotubes (Steele/Delft) m = 10 -21 kg = 2 x 500 MHz x th = 4 x 10 -11 m x zp = 4 x 10 -12 m Introduction to Nanomechanics811.04.2012
9
Real Numbers (T = 1 K) Top-down doubly clamped beams (Schwab) m = 10 -15 kg = 2 x 10 MHz x th = 2 x 10 -12 m x zp = 3 x 10 -14 m Bottom-up doubly clamped “clean” nanotubes (Steele/Delft) m = 10 -21 kg = 2 x 500 MHz x th = 4 x 10 -11 m x zp = 4 x 10 -12 m Introduction to Nanomechanics911.04.2012
10
Real Numbers (T = 10 mK) Top-down doubly clamped Si beams (Schwab) m = 10 -15 kg = 2 x 10 MHz x th = 2 x 10 -13 m x zp = 3 x 10 -14 m Bottom-up doubly clamped “clean” nanotubes (Steele/Delft) m = 10 -21 kg = 2 x 500 MHz x th = 4 x 10 -12 m x zp = 4 x 10 -12 m Introduction to Nanomechanics1011.04.2012
11
Technical Challenges Resonator Fabrication (high frequency, low dissipation, low mass) Displacement sensing (low measurement imprecision, i.e. low noise floor) Refrigeration (mK temperatures) Introduction to Nanomechanics1111.04.2012
12
Introduction to Nanomechanics1211.04.2012
13
Expectation vs. Reality Introduction to Nanomechanics13 T (K) N th 11.04.2012
14
Strategies for Cooling Resonators “Brute force”: High resonance frequencies & low reservoir temperatures Damping mechanical motion Cavity cooling Introduction to Nanomechanics1411.04.2012
15
fiber interferometer spectrum analyzer piezo cantilever Usual Cantilever Motion Detection
16
fiber interferometer spectrum analyzer damping piezo cantilever Simple Electronic Damping
17
350037504000 Frequency (Hz) 4250 1000 100 10 1 0.1 0.01 1E-3 1E-4 1E-5 T mode = 3.8 K Q 0 = 45,660 Sprectral density (Å 2 /Hz) Cooling (damping) of a cantilever - T = 4.2K g = 0 Interferometer shot noise level
18
350037504000 Frequency (Hz) 4250 1000 100 10 1 0.1 0.01 1E-3 1E-4 1E-5 T mode = 530 mK Q eff = 5,834 Sprectral density (Å 2 /Hz) Cooling (damping) of a cantilever - T = 4.2K g = 6.8 Interferometer shot noise level
19
350037504000 Frequency (Hz) 4250 1000 100 10 1 0.1 0.01 1E-3 1E-4 1E-5 T mode = 71 mK Q eff = 674 Sprectral density (Å 2 /Hz) Cooling (damping) of a cantilever - T = 4.2K g = 67 Interferometer shot noise level
20
350037504000 Frequency (Hz) 4250 1000 100 10 1 0.1 0.01 1E-3 1E-4 1E-5 T mode = 13 mK Q eff = 173 Sprectral density (Å 2 /Hz) Cooling (damping) of a cantilever - T = 4.2K g = 263 Interferometer shot noise level
21
350037504000 Frequency (Hz) 4250 1000 100 10 1 0.1 0.01 1E-3 1E-4 1E-5 T mode = 5.3 mK Q eff = 87 Sprectral density (Å 2 /Hz) Cooling (damping) of a cantilever - T = 4.2K g = 525 Interferometer shot noise level
22
350037504000 Frequency (Hz) 4250 1000 100 10 1 0.1 0.01 1E-3 1E-4 1E-5 T mode = 0.62 mK Q = 36 Sprectral density (Å 2 /Hz) Cooling (damping) of a cantilever - T = 4.2K g = 1267 Interferometer shot noise level
23
350037504000 Frequency (Hz) 4250 1000 100 10 1 0.1 0.01 1E-3 1E-4 1E-5 T mode = -0.25 mK Q eff = 15 Sprectral density (Å 2 /Hz) Cooling (damping) of a cantilever - T = 4.2K g = 3043 Interferometer shot noise level
24
350037504000 Frequency (Hz) 4250 Sprectral density (Å 2 /Hz) 1000 100 10 1 0.1 0.01 1E-3 1E-4 1E-5 T mode = -3.0 mK Q eff = 10 Cooling (damping) of a cantilever - T = 4.2K g = 4565 Mechanical feedback can cancel photon shot noise! Negative mode temperature?! Interferometer shot noise level
25
fiber interferometer spectrum analyzer damping piezo cantilever Experimental setup measurement noise
26
Measured spectral density: Effective Q with feedback: Actual cantilever spectral density: Cantilever mode temperature: Cantilever Noise Temperature with Feedback
27
Measured spectral density: Effective Q with feedback: Actual cantilever spectral density: Cantilever mode temperature: For optimum feedback gain Cantilever Noise Temperature with Feedback
28
350037504000 Frequency (Hz) 4250 Spectral density (Å 2 /Hz) 1000 100 10 1 0.1 0.01 1E-3 1E-4 1E-5 T = 4.2 K T mode = 5.3 K T mode = 530 mK T mode = 73 mK T mode = 16 mK T mode = 4.6 mK T mode = 8.3 mK T mode = 5.3 mK T mode = 9.3 mK Cooling (damping) of a cantilever - T = 4.2K → 4.6mK
29
01000 2000 g 3000 T mode (mK) 0.1 400050006000 T = 4.2 K Q 0 = 45,660 Theoretical Limit 1 10 100 1000 10000 T mode, min = 4.6 mK Q eff = 36 Cooling (damping) of a cantilever – model and experiment
30
Theoretical Limit 02000 g T mode (K) 10 1 10 0 10 -1 10 -2 10 -3 40006000 T = 295 K T mode = 2.9 mK T = 4.2 K T = 2.2 K 10 2 Cooling (damping) of a cantilever – model and experiment
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.