Presentation is loading. Please wait.

Presentation is loading. Please wait.

B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 Mass Measurement Collaboration G. Audi, K. Beckert, P. Beller, F. Bosch, D. Boutin, T. Buervenich,

Similar presentations


Presentation on theme: "B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 Mass Measurement Collaboration G. Audi, K. Beckert, P. Beller, F. Bosch, D. Boutin, T. Buervenich,"— Presentation transcript:

1 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 Mass Measurement Collaboration G. Audi, K. Beckert, P. Beller, F. Bosch, D. Boutin, T. Buervenich, L. Chen, I. J. Cullen, B. Fabian, T. Faestermann, B. Franzke, H. Geissel, M. Hausmann, P. Kienle, O. Klepper, C. Kozhuharov, K.-L. Kratz, R. Knöbel, S.A. Litvinov, Yu.A. Litvinov, Z. Liu, L. Maier, J. Meng, G. Münzenberg, F. Nolden, T. Ohtsubo, A. Ozawa, Z. Patyk, B. Pfeiffer, W.R. Plass, T. Radon, H. Schatz, C. Scheidenberger, J. Stadlmann, M. Steck, B. Sun, S. Typel, D.J. Vieira, P.M. Walker, H. Weick, M. Winkler, H. Wollnik, T. Yamaguchi and FRS-ESR collabration

2 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 Precise Mass Measurements of relativistic exotic Nuclei in Storage Rings Introduction High-precision mass spectrometry Summary and Outlook Bao-Hua Sun

3 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 Motivation UNCLEAR PHYSICS NUCLEAR PHYSICS

4 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 Motivation  Nuclear physics  Nuclear astrophysics  Others Fundamental interactions and Standard-Model Metrology: fundamental constants, Kg.. ….. Paths of nucleosynthesis Element abundance … Nuclear Mass M(N, Z) = Z·m p + N·m p - B(N, Z)/c 2 Total Binding energies Separation energy, drip-line Shell, subshell closure, pairing Deformation New phenomena: decay mode, halo nuclei New isomer, new isotope Reaction Q-value Test nuclear model or formula …

5 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 Up to 2003 AME’2003 Nuclear Chart

6 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 < 100 keV required Mass Accuracy

7 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009  T<0.1s Half-lives

8 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 K.Blaum,Phys.Rep.425,1(2006) Worldwide Mass spectrometry

9 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 ~ 5 s5 - 30~ 2·10 6 Fission, Fragmentation In-Flight Storage Ring Schottky FRS-ESR SMS, GSI ~ 50  s ~ 1002*10 5 Fission, Fragmentation In-Flight Storage Ring Isochronous FRS-ESR IMS, GSI 10 10 – 20 50 – 1000 100 – 1000 Mass Accuracy [keV] ~ 1 s ~ 30 ms ~ 50  s ~ 1  s Measurement Duration 10 6 – 10 7 ISOLPenning TrapISOTRAP CERN ~10 5 ISOLRF Spectrometer MISTRAL CERN 3·10 4 Fusion, Fragmentation CyclotronCSS2 GANIL 10 4 Fragmentation In-Flight B  -TOF Spectrometer SPEG GANIL Mass Resolving Power Production Separation TechniqueFacility Mass Accuracy Half-live limitation Mass Spectrometry

10 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 Ion Sources UNILAC SIS ESR GSI Accelerator Facility Today SHIP Reaction Setup LAND - ALADIN FRS Experimental Areas 11.4 MeV/u U 73+ Up to 1000 MeV/u U 92+ 2*10 9 pps 238 U 4+

11 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 Production & Separation of Exotic Nuclei Highly-Charged Ions (0, 1, 2 … bound electrons) In-Flight separation within ~ 500 ns Cocktail or mono-isotopic beams Transmission to the ESR of about 1% Primary beams @ 400-1000 MeV/u Projectile fragmentation and fission Pereira et al., PRC 75, 14602(2007)

12 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 The Fragment Separator FRS

13 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 The Experimental Storage Ring ESR

14 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 SMS and IMS

15 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 Time-resolved SMS 1987 - B. Franzke, H. Geissel, G. Münzenberg

16 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 electron collector electron gun high voltage platform magnetic field electron beam ion beam Principle of electron cooling Same mean velocity of e - and ions; strong magnetic guiding field; substitution of e - after a cycle 0.97 1 1.03 rel. ion velocity v/v 0 ion intensity before cooling after cooling The idea of electron cooling is a heat exchange through Coulomb scattering between hot heavy particles (antiprotons) and cold electrons while the beams are mixed in a cooling section.

17 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 Electron cooler The 250 keV electron cooler at the ESR

18 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 SMS: Broad Band Frequency Spectra

19 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 SMS Sensitivity to single ion  discovery of new isomer, new isotope B. Sun et al., EPJA 31 (2007) 393 Characteristic of Time-resolved SMS

20 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 SMS Sensitivity to single ion  discovery of new isomer, new isotope Time-correlated measurement   identification, mass, lifetime Characteristic of Time-resolved SMS Lifetime = 193 s As complimentary tools to  -ray spectrometry

21 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 SMS Sensitivity to single ion Time-correlated measurement High precision: 10 -7 -10 -8 By restricting over a small frequency range we minimize ion-optical nonlinearities and achieve the mass accuracy of  m/m=4.3*10 -8 for A=93. 93 Tc 42+ and 93g Mo 42+ as references:: ME( 93 Tc)=-83603(4) keV; ME( 93g Mo)=-86803(4) keV  to determine the mass of 93m Mo 42+ H. Geissel et al., Eur. Phys. J. Special Topics (2007) Characteristic of Time-resolved SMS

22 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 SMS Sensitivity to single ion Time-correlated measurement High precision: 10 -7 -10 -8 Large-scale mass measurements Characteristic of Time-resolved SMS

23 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 Isochronous Mass Spectrometry 1985 - H. Wollnik, Y. Fujita, H. Geissel, G. Münzenberg, et al.

24 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 Revolution time spectrum About 13% in mass-over-charge range m/q range: 2.4-2.7 Nuclei with half-lives as short as 17  s R TOF =60 000

25 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 17  s isomeric state in 133 Sb IMS: resolving power (FWHM) Genevey et al., EPJA 7, 463 (2000) Expected half-live of bare isomer: ~ 17 ms,  t ~991 R IMS =200 000

26 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 IMS Sensitivity to single ion High precision: ~10 -6 Large-scale mass measurements Characteristic of IMS N Z B.Sun et al., NPA 812 (2008)1

27 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 Comparisons with nuclear mass models

28 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 Shell evolution at N=50 Independent experimental information

29 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 Influence on the r-process calculation n n =10 20 cm -3, T=1.5*10 9 K

30 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 Experimental proton-neutron interaction p-n interactions are sensitive to the spatial overlaps Of the proton and neutron wave functions

31 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 Experimental proton-neutron interaction p-n interactions are sensitive to the spatial overlaps Of the proton and neutron wave functions L. Chen et al., PRL, 2009

32 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 Schottky Mass Spectrometery: Time-resolved, half-live, masses Mass accuracy: 30 keV Mass resolving power: 2·10 6 T 1/2 : > 1s Isochronous Mass Spectrometry: First large-scale measurement Mass accuracy: ≈ 100 keV Mass resolving power: 2 ∙10 5 T 1/2 : ~ 50  s Summary Masses of more than 1100 Nuclides were measured Results: ~ 350 new masses In addition more than 300 improved mass values

33 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 Georg Christoph Lichtenberg (1742-1799) “Man muß etwas Neues machen, um etwas Neues zu sehen.” “You have to make something new, if you want to see something new” Next generation

34 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 UNILAC SIS FRS ESR SIS 100/200 HESR Super FRS NESR CR Facility for Antiproton and Ion Research Increase beam intensities: a factor of 100-1000 for primary beam a factor of 10 000 for secondary beam Broad energy range: up to 2 GeV/u Storage & cooler rings Increased precision, sensitivity Reach the limits of nuclear stability New phenomena Nucleosynthesis paths … Isomeric Beams, Lifetimes and Masses

35 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 References for further reading D. Lunney, J.M. Pearson, C. Thibault, Rev. Mod. Phys. 75 (2003) 1021. K. Blaum, Phys. Rep. 425 (2006) 1. B. Franzke, H. Geissel, G. Münzenberg, Mass Spectrom. Rev. 27 (2008) 428.T. Radon, et al., Nucl. Phys. A 677 (2000) 75. T. Radon, et al., Nucl. Phys. A 677 (2000) 75. Yu.A. Litvinov, et al., Nucl. Phys. A 756 (2005) 3. M. Hausmann, et al., Nucl. Instrum. Methods A 446 (2000) 569. B. Sun, et al., Phys. Rev. C 78 (2008) 025806. and references therein

36 B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 Thank you for you attention !!!


Download ppt "B. Sun, Minischool on the Physics of NUSTAR, June 8-11, 2009 Mass Measurement Collaboration G. Audi, K. Beckert, P. Beller, F. Bosch, D. Boutin, T. Buervenich,"

Similar presentations


Ads by Google