Download presentation
Presentation is loading. Please wait.
Published byTiffany Parrish Modified over 9 years ago
1
An Initial Look at the FIR-Radio Correlation within Galaxies using Spitzer Eric Murphy (Yale) Co-Investigators George Helou (SSC/IPAC) Robert Braun (ASTRON) Lee Armus (SSC) Jeff Kenney (Yale) SINGS team Murphy et al. (2005)
2
Eric J. MurphyIsland Universes7/7/2005 FIR – Radio Correlation q ≡ log(FIR/3.75 x 10 -12 Hz/S ν ) (Helou et al. 1985) ► Spans 5 Orders of Magnitude in Luminosity ► Dispersion of ~0.2 dex (no AGN, IRAS confusion etc…) ► Found to Exist up to z~2 (Appleton et al. 2004) ► Thought to be driven by the Process of Massive Star Formation (Harwit & Pacini 1975) FIR – Dust heated by Massive stars Radio – CRe - accelerated by SNe in B-field Wait a sec… How did they know before IRAS observations?
3
Eric J. MurphyIsland Universes7/7/2005 The First Signs…van der Kruit 1971 ► ~35 years later, and still trying to figure out why it works!
4
But… ► FIR affected by: IMF UV photon transport Optical depth Grain distribution/composition ► Radio affected by: IMF SNe & SNR ISM shocks Particle acceleration Transport – diffusion & confinement Magnetic Field ► How can FIR/Radio ratios of galaxies show such little scatter? Duric (1991)
5
Eric J. MurphyIsland Universes7/7/2005 IR and Radio Data ► Spitzer IR data: MIPS maps at 24, 70, and 160μm ► FWHM of 70μm PSF ~17” ► WSRT Radio Continuum data: Maps at 18 and 22cm ► FWHM of radio beam ~17” ► CLEAN data restored with MIPS 70μm PSF ► Galaxy Sample: 30 galaxy subset of SINGS Legacy Science Sample (Kennicutt et al. 2003) SINGS
6
Eric J. MurphyIsland Universes7/7/2005 Thesis Goals ► Improve the current physical picture of the FIR-Radio correlation: Quantify variations in the correlation across galaxy disks. Correlate observed variations with ancillary observations. ► e.g. mean star-formation age and strength Derive a better understanding of what regulates the correlation on galaxy scales. ► Constrain CRe - diffusion and decay models from observations.
7
Eric J. MurphyIsland Universes7/7/2005 Paper Sample Galaxies ► Chosen due to proximity and low inclination. GalaxyTypeDistance(Mpc)Resolution(pc)SFR (M /yr) q NGC 2403 SABcd3.53000.7722.50 NGC 3031 SAab3.53000.8572.45 NGC 5194 SABbc8.27506.062.09 NGC 6946 SABcd5.55004.052.28 SFRs are IRAS based using equation 5 from Bell (2003)
8
NGC 2403 (q 70 ) S 22cm I 70µm
9
NGC 3031 (q 70 ) S 22cm I 70µm
10
NGC 5194 (q 70 ) S 22cm I 70µm
11
NGC 6946 (q 70 ) S 22cm I 70µm
12
NGC 2403 NGC 3031 NGC 5194 NGC 6946 I 24µm I 70µm I 22cm
13
Eric J. MurphyIsland Universes7/7/2005 IR/Radio (q) Maps q λ log(f ν (λ[μm])/f ν (22cm)) ► λ=24 and 70µm At best common resolution w/ radio data
14
q 70 Maps
15
q 24 Maps
16
Eric J. MurphyIsland Universes7/7/2005 q λ Map Results Coincidence in IR and Radio Peaks q 24 more strongly peaked than q 70 around HII regions 24µm emission traces hotter dust & more localized around HII regions IR/Radio Morphology Higher along Arms & HII regions Lower for inter-arms & outer-disk
17
Aperture Photometry ► ‘Critical’ Aperture Size FWHM of 70μm PSF Linearly Projected at: NGC 5194 0.75 kpc NGC 6946 0.5 kpc NGC 3031 0.3 kpc NGC 2403 0.3 kpc ► Regions Nucleus: Cyan Inner-Disk: Red Arm: Blue Inter-Arm: Green Outer-Disk: Yellow
18
Radial Trends in q 70
19
q 70 vs. f ν (70μm)
20
Eric J. MurphyIsland Universes7/7/2005 Photometry Statistics Galaxy σ 70 σ 24 NGC 2403 2.240.2191.080.235 NGC 3031 2.200.2511.020.224 NGC 5194 1.900.1970.8560.231 NGC 6946 1.940.2030.9470.231 NOTE: Radial and Surface Brightness trends similar for q 24
21
Eric J. MurphyIsland Universes7/7/2005 Dispersion in q 70 vs. Aperture Diameter
22
q 70 within and among Galaxies (1.5 kpc apertures) σ g = 0.267 N = 1752 (Yun et al. 2002) σ w = 0.240 N = 282
23
Eric J. MurphyIsland Universes7/7/2005 Aperture Photometry Results General trend of increasing q 70 and q 24 with: Increasing IR surface brightness (Opposite of global trend) Decreasing Radius Dispersion at constant radius ~25% larger than at constant surface brightness. SF sites more important in determining shape of IR/radio disk than exponential disks. Dispersion in q 70 within galaxies comparable to dispersion among galaxies
24
Eric J. MurphyIsland Universes7/7/2005 Cosmic Ray Diffusion Modeling ► Image Smearing Model of Bicay & Helou (1990) ► Assumption: Difference in IR and Radio morphology due to diffusion of CRe - ► Following work of Marsh & Helou (1995, 98) But, we are using IR images at native resolution (unlike IRAS HiRes used by MH95, 98)
25
Eric J. MurphyIsland Universes7/7/2005 Image Smearing Technique ► IR image: I(r); Radio Image: R(r) ► Smeared IR Image: Ĩ(r) = I(r) * κ(r) κ(r): kernel containing CRe - diffusion and decay physics ► Residual Image = log(Q -1 Ĩ(r)) – log(R(r)) Q = ∑Ĩ j (r) / ∑R j (r)
26
Eric J. MurphyIsland Universes7/7/2005 Residuals ► Minimize Residual Parameter: φ(Q,t,p,l) = ∑ [Q -1 Ĩ j - R j ] 2 / ∑ R j 2 t: type (Gaussian/exponential) p: projection (sky/galaxy) l: scale-length ► Normalize by radio image to account for variations in surface brightness
27
Residuals vs. Scale-length
28
Smearing Residual Maps
29
Eric J. MurphyIsland Universes7/7/2005 Improvements by Image Smearing (case: exponential kernel in plane of sky) Galaxy l (pc) Φ (pixels) σ 70 δ σ 70 (apertures) NGC 2403 900 0.075 (19%) 0.146 -0.073 (18%) NGC 3031 2500 0.31 (~2x) 0.230 -0.021 (5%) NGC 5194 500 0.29 (~2x) 0.160 -0.037 (9%) NGC 6946 300 0.17 (50%) 0.161 -0.042 (10%) Φ≡ log(φ(0)/min(φ)) :masked Φ ≡ log(φ(0)/min(φ)) :masked δ σ 70 ≡ σ 70 - σ 70 (smeared) :no mask
30
Eric J. MurphyIsland Universes7/7/2005 CRe - Diffusion Modeling Results Smearing technique works to improve the correlation Reduces residuals by up to a factor of 2 Exponential kernels work marginally better than Gaussians (~15%) Suggests CRe - evolution not well described by random-walk diffusion A single kernel does not work for entire disk. Residual trends opposite for active & quiescent regions Quiescent galaxies have larger scale-lengths Due to deficit of recent CRe - injection into ISM NGC 2403: Are we seeing two populations of CRe - ?
31
NGC 2403: A case for 2 CRe - populations? n ≥ 5 cm -3 l ~ 1 kpc τ ~ 5 x 10 7 yrs (Helou & Bicay (1993) NGC 6946: l = 300 pc NGC 2403: l 1 = ~200 pc l 2 = ~1 kpc
32
Eric J. MurphyIsland Universes7/7/2005 Future Goals Future Goals ► Perform same analysis on ~30 SINGS galaxies. ► More Detailed Modeling of CRe - Diffusion Separate high spatial frequency components from disks Compare observed smearing scale-lengths with models ► Include other data sets to help constrain dependence of IR/radio ratio on HII region age and ISM properties. gain more insight into CRe - physics: ► NIR [FeII] and Paβ imaging ► Dust Temperature Maps ► Radio spectral index maps ► 8/24μm colors ► IRS Spectroscopy
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.