Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 10 Cell Divison.

Similar presentations


Presentation on theme: "Chapter 10 Cell Divison."— Presentation transcript:

1 Chapter 10 Cell Divison

2 Information “Overload”
Living cells store critical information in DNA. @As a cell grows, that information is used to build the molecules needed for cell As size increases, the demands on that information grow as well. If a cell were to grow without limit, an “information crisis” would occur.

3 Information “Overload”
Compare a cell to a growing town. The town library has a limited number of books. As the town grows, these limited number of books are in greater demand, which limits access. A growing cell makes greater demands on its genetic “library.” If the cell gets too big, the DNA would not be able to serve the needs of the growing cell.

4 Exchanging Materials Food, oxygen, and water enter a cell through the cell membrane. Waste products leave in the same way. The rate at which this exchange takes place depends on the surface area of a cell. The rate at which food and oxygen are used up and waste products are produced depends on the cell’s volume. The ratio of surface area to volume is key to understanding why cells must divide as they grow.

5 Traffic Problems To use the town analogy again, as the town grows, more and more traffic clogs the main street. It becomes difficult to get information across town and goods in and out. Similarly, a cell that continues to grow would experience “traffic” problems. If the cell got too large, it would be more difficult to get oxygen and nutrients in and waste out.

6 Comparing Sexual and Asexual Reproduction

7 Chromosomes The genetic information that is passed on from one generation of cells to the next is carried by chromosomes. @Every cell must copy its genetic information before cell division Each daughter cell gets its own copy of that genetic information.

8 Prokaryotic Chromosomes
Prokaryotic cells lack nuclei. Instead, their DNA molecules are found in the cytoplasm. Most prokaryotes contain a single, circular DNA molecule, or chromosome, that contains most of the cell’s genetic information.

9 The Prokaryotic Cell Cycle
Binary fission is a form of asexual reproduction during which two genetically identical cells are produced. For example, bacteria reproduce by binary fission.

10 Eukaryotic Chromosomes
In eukaryotic cells, chromosomes are located in the nucleus, and are made up of chromatin.

11 Chromatin is composed of DNA and histone proteins.

12 DNA coils around histone proteins to form nucleosomes.

13 The nucleosomes interact with one another to form coils and supercoils that make up chromosomes.

14 The Eukaryotic Cell Cycle
The eukaryotic cell cycle consists of four phases: G1, S, G2, and M. Interphase is the time between cell divisions. It is a period of growth that consists of the G1, S, and G2 phases. The M phase is the period of cell division.

15 G1 Phase: Cell Growth @In the G1 phase, cells increase in size and synthesize new proteins and

16 S Phase: DNA Replication
In the S (or synthesis) phase, new DNA is synthesized when the chromosomes are replicated.

17 G2 Phase: Preparing for Cell Division
In the G2 phase, many of the organelles and molecules required for cell division are produced.

18 M Phase: Cell Division In eukaryotes, cell division occurs in two stages: mitosis and cytokinesis. Mitosis is the division of the cell nucleus. Cytokinesis is the division of the cytoplasm.

19 Important Cell Structures Involved in Mitosis
Chromatid – each strand of a duplicated chromosome Centromere – the area where each pair of chromatids is joined Centrioles – tiny structures located in the cytoplasm of animal cells that help organize the spindle Spindle – a fanlike microtubule structure that helps separate the chromatids

20

21 Cell Type Typical Lifespan Intestinal Lining ? Skin Cell Red Blood Cell Liver Cell Intestine –Muscle and other tissue

22 Cell Type Typical Lifespan Intestinal Lining 4-5 Days Skin Cell 2 Weeks Red Blood Cell 4 Months Liver Cell 300 – 500 Days Intestine –Muscle and other tissue 16 years

23 Prophase During prophase, the first phase of mitosis, the duplicated chromosome condenses and becomes visible.

24 Prophase During prophase, the first phase of mitosis, the duplicated chromosome condenses and becomes visible. The centrioles move to opposite sides of nucleus and help organize the spindle.

25 Prophase During prophase, the first phase of mitosis, the duplicated chromosome condenses and becomes visible. The centrioles move to opposite sides of nucleus and help organize the spindle. The spindle forms and DNA strands attach at a point called their centromere.

26 Prophase During prophase, the first phase of mitosis, the duplicated chromosome condenses and becomes visible. The centrioles move to opposite sides of nucleus and help organize the spindle. The spindle forms and DNA strands attach at a point called their centromere. The nucleolus disappears and nuclear envelope breaks down.

27 Metaphase During metaphase, the second phase of mitosis, the centromeres of the duplicated chromosomes line up across the center of the cell.

28 Metaphase During metaphase, the second phase of mitosis, the centromeres of the duplicated chromosomes line up across the center of the cell. The spindle fibers connect the centromere of each chromosome to the two poles of the spindle.

29 Anaphase During anaphase, the third phase of mitosis, the centromeres are pulled apart and the chromatids separate to become individual chromosomes. @The chromosomes separate into two groups near the poles of the

30 Telophase During telophase, the fourth and final phase of mitosis, the chromosomes spread out into a tangle of chromatin. A nuclear envelope re-forms around each cluster of chromosomes. The spindle breaks apart, and a nucleolus becomes visible in each daughter nucleus.

31 Cytokinesis Cytokinesis is the division of the cytoplasm.
@The process of cytokinesis is different in animal and plant

32 The Stages of the Cell Cycle

33 Video

34 This type of reproduction produces genetically identical offspring
Asexual Reproduction

35 The center area where two sister chromatids are joined at
Centromere

36 In this part of mitosis, chromatids are pulled apart to their separate poles.
Anaphase


Download ppt "Chapter 10 Cell Divison."

Similar presentations


Ads by Google