Presentation is loading. Please wait.

Presentation is loading. Please wait.

INPE Advanced Course on Compact Objects Course IV: Accretion Processes in Neutron Stars & Black Holes Ron Remillard Kavli Center for Astrophysics and Space.

Similar presentations


Presentation on theme: "INPE Advanced Course on Compact Objects Course IV: Accretion Processes in Neutron Stars & Black Holes Ron Remillard Kavli Center for Astrophysics and Space."— Presentation transcript:

1 INPE Advanced Course on Compact Objects Course IV: Accretion Processes in Neutron Stars & Black Holes Ron Remillard Kavli Center for Astrophysics and Space Research Massachusetts Institute of Technology http://xte.mit.edu/~rr/inpe_IV.5.ppt

2 IV.5 Variability in X-ray Binary Systems  msec X-ray Pulsars Sources and Significance Timing and Spectral Properties  Aperiodic Variability in Accreting Neutron Stars Type I X-ray Bursts Type II X-ray Bursts Superbursts kHz QPOs  Aperiodic Variability in Black Holes Impulsive Relativistic Jets Weaker Types of Impulsive Jets Wild Instability Cycles in GRS1915+105

3 Msec X-ray Pulsars Source Spin (Hz) Orbit (hr) Bursts (Hz) IGR J00291+5934599 2.45 XTE J0929-314185 0.73 XTE J1751-305435 0.70 XTE J1807-294191 0.58 SAX J1808.4-3658401 2.00 bursts (401) XTE J1814-338314 4.27 bursts (314); not wd? HETE J1900.1-2455377 1.39 bursts Swift J1756.9-2508182 0.90 Characteristics: Extremely compact binaries; wd companion (R c ~0.05 R o ; M c ~0.02 M o ) Tip of reservoir of accretion-spun-up pulsars visible in X-rays Key to spin-ID of burst oscillations Key to inventory of spin distributions Key toward a model for kHz QPOs

4 Msec X-ray Pulsars XTE J0929-314: typical, faint transient peak ~ 30 mCrab (1.5-12 keV) outburst duration ~65 days HETE J1900.1-2455: transient persists for 2+ years; brief turnoff ; early end of msec pulsations (Aug. 19, 2005)

5 Energy Spectra & Power Spectra of msec Pulsars msec X-ray pulsars resemble Atoll sources in hard state. So why don’t atolls pulse (burst oscillations  similar spin frequencies) B ranges different? accretion plasma buries B? HETEJ1900 may inform us!

6 Type I X-ray Bursts Number of bursters~80 Science Applications:  Neutron-star finder  Burst oscillations (  spin)  Radius-expansion bursts (  distance estimate)  Redshifted abs. lines? (Cottam et al, 2003: 1? Case)  Test burst models  Trace dM/dt at NS surface?  Topic for BH event horizon test (lack of bursts in BH)

7 Type I X-ray Bursts Burst Oscillations e.g., Strohmayer & Markwardt 1999 14 sources of BOs max = spin range: 45, 270-619 Hz some frequency profiles are shorter or spotted (on/off) amplitudes increase with energy (Muno et al. 2003)

8 Type I X-ray Bursts Burst Oscillations multiple max measures From the same source give consistent results Muno et al. 2002

9 Msec X-ray Pulsars and Burst Oscillations Frequency (Hz) Spin Distribution Neutron Star Speed limit ~730 Hz (burst oscillations, radio pulsars, X-pulsars; Chakrabarty et al. 2003) Why is limit < breakup freq. magnetic-accretion spin equilibrium? Gravitational waves? (Wagoner 1984; Bildsten 1998)

10 Type I X-ray Bursts Radius Expansion Bursts e.g., Z-transient XTE J1701-462 Isolate burst spectrum(t) Fit spectra to blackbody (R,t) See R expansion + dip in T evolution  Eddinton L x  distance estimate (assume M x, layer composition)  Look for consistent results

11 Rudimentary Elements of Bursts Models Paradigm: thermonuclear explosion of H, He from accumulated, accreted matter on NS surface  Use L x as a scale for dM/dt  Assume (vary) M NS and R NS  Assume (vary) composition  Calculate (vary) T of subsurface layer (NS cooling model)  Compute hydrostatic equilibrium  Monitor ( , T) for detonation conditions Many complexities, e.g. differential rotation and turbulent mixing in surface layer (Prio & Bildsten 2007)

12 Bursts Models Status of burst models (see Strohmayer & Bildsten 2006  many bursters on fast and slow side of burst rate expectations Burst Oscillation Models spot evolution ray tracing for osc. amplitude(t)) Spitkovsky et al 2002, ApJ, 566, 1018 Type I bursts: huge science comeback; 1990s poster-child for “old and boring”

13 Type II X-ray Bursts Number of sources2 ; events are NOT thermal 4U1730-33 (rapid burster + type I) ; GRO J1744-28 (bursting pulsar) Linear  E vs.  t  accretion instability Cause unknown (magnetic?; high-rate ADAF?) 0 300 600 Time (s) Count rate Rapid Burster; Inoue 2004, Adv. Sp. Res., 34, 2550

14 SuperBursts in Accreting Neutron Stars Number of sources8 duration: few to 10 hr triggered by a type I burst recurrence rate: year(s) can excite transient pulsar at spin rate (1636-53) model: C detonation in accretion/burst residue in subsurface layers

15 kHz QPOs Number of sources 26 atolls16 Z-type 8 msec pulsars 2 Properties move in frequency (300-1200 Hz) often twin, sometime solo separation of twins varies slowly

16 kHz QPOs QPO Scales van der Klis 2006 Plot everything vs. upper kHz QPO interpretations controversial Upper kHz QPO

17 kHz QPOs Current kHz QPO Models Beat frequency model (Miller & Lamb) twin peaks: Keplerian vs. NS surface footprint with R NS < R ISCO twin peak separation interpreted as spin However, twin peak separation is spin or 0.5 spin Disk Resonance (Abramowicz & Kluzniak) TypIcial twin peaks are 600, 900 Hz  3:2 ratio Resonance model for NS disks

18 Impulsive, Relativistic Jets in BH Binaries GRS1915+105 jets v > 0.9 c (Mirabel & Rodriguez 1994; Fender et al. 1999) Also GRO J1655-40, Cyg X-3, XTE J1550-564 (see Fender 2006) Special relativity demo; nut beware of assumption of bipolar symmetry Ejection moment not observed in X-rays

19 Black Holes in the Milky Way Relativistic jets imaged in radio and also in X-rays (Chandra). (Hannikainen et al. 2001; Corbel et al. 2002). Baryonic content of MQ jets still uncertain, except for SS433

20 Impulsive, Relativistic Jets in BH Binaries Small-scale impulsive jets B-cycles of GRS1915+105 (Eikenberry et al. 1998; Fender + Pooley 1998) strong evidence for disk:jet connection other LC types (Eikenberry et al. 2007; Rodriguez et al. 2007)

21 More Complications: Fast X-ray Novae SAX J1819.3-2525 (V4641 Sgr) black hole binary + relativistic radio jets ‘Fast X-ray Nova’ 20 min light curve, Sept 15, 1999 (RXTE)

22 RXTE Observations of GRS1915+105 1996 – 2006: 1351 obs. (public data; 4.77 Ms)  785 data intervals (4.43 Ms) Quasi-steady428 (rms < 16%; 1 s bins; 307 hard; 121 soft) Variable Light Curves357 (rms > 16%)

23 Light Curve Types: Steady Variable  hard-steady304 23 (  -var )  soft-steady 64 0  soft-rolling 36 20  soft+dips 21 10  fast flare sequence + long min. 3 20  hard dip + trigger + soft spike 0 33  square waves 0 20 steady-flicker-dip sequence 0 5  flicker  steady switching 0 16 flare-dip sequence + long min. 0 42  heartbeats (50 s) 0 89  dropouts to soft and variable 0 44 ….new or inter- combinations 0 35 _______ _______ 428 357

24 Steady Conditions: Color-Color Diagrams

25 Steady Conditions & Radio Flux GRS1915+105: coded for radio flux (Ryle telescope, 15 GHz): x  (x S 75 mJy ;

26 BHB Color-Intensity Diagrams GRS1915+105/steady H1743-322 GX339-4

27 Fast QPOs in GRS1915+105 67 Hz: 28 (of 785) QPO detections (  > 4): Sample: 67.37 Hz = 30.2 LC Type Detect (total) FrequencyQ ( freq./FWHM )  2 (64)66.23 (0.34) 16  8 (56)65.85 (0.24) 14  13 (31)66.72 (0.21) 11  4 (16)66.92 (0.70) 24  1 (20)68.60 (0.93) 20 QPO Frequencies: 41, 67, 113, 165 Hz  67 Hz in “agitated soft state” or thermal:SPL intermediate

28 QPO near 67 Hz in type-averaged PDS  [64]  [56]  [31]

29 QPOs in Variable States (avg. PDS; 2-40 kev)   [42]    [89]    [44]

30 GRS1915+105 Light Curves:  Type bright-hard zone contains a high-frequency QPO

31 GRS1915+105 : theta-blue Power Density Spectra, blue region QPO (9  ) at 165 +- 3 Hz; harmonic (330 Hz; 3.7  ) Q = 5, ampl = 2% (13-30 keV) Colors resemble steep power-law state

32 GRS1915+105 Light Curves:  Type Long exposures, July 16-18, 2001. bright-hard zone: 113 Hz QPO at 6-40 keV

33 High Frequency QPOs from GRS1915+105 Type  : bright-hard zone; 15-40 keV Data Frequency Q ( freq./FWHM ) 1997 Sept. 5-29 Remillard et al. 2002165 (3)5 1997 June - Oct.Belloni et al. 2006166 (7) 2 All Type  [44](all HID zones)165 (3)4.7 (0.5) Type  : bright-hard zone; 6-40 keV Data Frequency Q ( freq./FWHM ) 2001 July 16-18 Remillard et al. 2004 113 (5) 2 All Type [42](all HID zones)112 (4)2.2 (0.4)

34 GRS1915+105 Light Curves:  Type Profile variations within the  group. MIT undergraduate thesis: J. Z. Gazak

35 GRS1915+105 Light Curves:  Type Recurrence time and flare fractions for the  group. MIT undergraduate thesis: J. Z. Gazak

36 GRS1915+105 Light Curves:  Type Cycle zones for the  group. MIT undergraduate thesis: J. Z. Gazak

37 GRS1915+105 Light Curves:  Type [82] 67 Hz in zone1 151 (4) Hz QPO in zone 3 7  ; Q = 3.2 (8 +/- 3 % below 165 Hz) keV: 2-40 6-40 15-40

38 QPOs in Variable States (avg. PDS; 2-40 kev)   [42]    [89]    [44] 6-40 keV 6-40 keV15-40 keV

39 MIRAX Support of Astrophysics Properties Physical Models MIRAX Observations Black Holes: mass Binary dynamics locate transients; optical teams spin GR disk spectra thermal state measures & alerts GR resonance (high-n QPOs) SPL state transitions and alerts event horizon Type I burst models deep limits for burst function jets Blandford-Znajek obs. moment of ejection; hard GR MHD? Vertical B? state transitions; radio teams accretion structures GR MHD (P rad regime) measure SPL high-L x flares

40 MIRAX Support of Astrophysics Properties Physical Models MIRAX Observations Neutron Stars: mass Binary dynamics locate NS transients radius kHz QPO models? bursts; atoll specra? spin Binary evolution theory locate msxp transients burst osc.; superburst osc. magnetic field Mag. evol. models? pulsar cyclotron lines SGR bursts; AXP bursts internal structure NS structure models SGR oscillations & crust Burst Models? Burst and superburst archive jets MHD? hard state; transit.; radio team


Download ppt "INPE Advanced Course on Compact Objects Course IV: Accretion Processes in Neutron Stars & Black Holes Ron Remillard Kavli Center for Astrophysics and Space."

Similar presentations


Ads by Google