Presentation is loading. Please wait.

Presentation is loading. Please wait.

Electrontransfer proteins. A schematic drawing of the mitochondrium respiratory chain (FMN: flavin mononucleotide, FeS: iron-sulphur protein, Q: ubiquinone,

Similar presentations


Presentation on theme: "Electrontransfer proteins. A schematic drawing of the mitochondrium respiratory chain (FMN: flavin mononucleotide, FeS: iron-sulphur protein, Q: ubiquinone,"— Presentation transcript:

1 Electrontransfer proteins

2 A schematic drawing of the mitochondrium respiratory chain (FMN: flavin mononucleotide, FeS: iron-sulphur protein, Q: ubiquinone, Cyt: cytochrome, CuA: type 1 blue copper protein). Electrontransfer proteins In biological systems the elecetrontransfer proteins make possible to carry out oxidation and reduction separated from each other in space. Complex I Complex III Complex IV

3 Electrontransfer proteins I. Function: Transport electrons to oxidise the substrate and reduce molecular oxygen.→ „One-electron” change of a metal ion with saturated coordination sphere in the interactions with electron- donor or acceptor molecules. Condition: Molecules with easy oxidability or reducibility. The electrontransfer molecules should cover wide redox potential range. Structure: small organic molecules: e.g. NAD/NADH, FAD/FADH2,.... metalloproteins

4 Electrontransfer proteins II. A schematic representation of the biological fuel cell The gross process: 2H 2 + O 2 → 2H 2 O Oxidation of H 2 inside the membrane, reduct- ion of the O 2 outside the membrane → electrons are trans- ferred by cytochromes while the energy is stored in the form of proton/ATP gradient.

5 Electrontransfer proteins III. Conditions of electron transfer: - The various proteins should cover a wide redox potential range (e.g. Fe-S → blue copper proteins ~ − 0.4 - + 0.7 V) - The coordination sphere of the metal ion should be saturated and should not change practically during electron transfer. - Change in the oxidation state should not be accompanied by changes in the coordination geometry, bond length/bond angles. → the specific coordination geometry should be suitable for both oxidation states of the metal ion. Electron uptake and removal should not result in significant change in the structure of the metal complex, e.g. it should be a low energy process.

6 Electrontransfer proteins IV. Types and structures of electrontransfer proteins: 1.Cytochromes: hem proteins may be: cytochrome a, b, c, (f): they differ in the type of the hem, the form of the hem- protein binding and the value of the redox potential (−200 - + 500 mV). 2.Iron-sulphur proteins: [Fe II/III a (S 2− ) b (RS − ) c ] redox potential: (−700) − 400 - 0.0 (+400) mV 3.Blue copper proteins: distorted terahedral Cu II complexes [Cu II N(His),N(His),S(Cys),S(Met)] redox potential: + 300 - +700 mV Oxidation chain: Fe-S → cytochrome b → cytochrome c → ciyochrome a → blue copper

7 Cytochromes I. Electrontransfer proteins containing hem prosthetic groups, i.e. they are in relation with hemo- and myoglobins. Nomenclature: colouring material of the cells, characteristic absorption band in the range 400-450 (600) nm Types: based on the hem group:

8 Cytochromes II. Structural features of cytochromes: - The coordination sphere of Fe III/II ions should be saturated axial amino acids: His, Met, (Lys, Cys, Tyr) - In the case of cytochrome a and b the hem is bound strongly but not covalently to the protein. In the case of cytochrome c the hem and the protein bind covalently. Most of the cytochromes are 1:1 units (1 hem + 1 protein), but there are cytochromes with multiple hem units. - The cytochromes always participate in one electron processes: Fe II → Fe III reversible electron transfers. - Redox potential values: (fairly wide range) characteristic values:cytochrome a: ~ + 400 mV cytochrome b: ~ + 0.0 mV cytochrome c: ~ + 260 mV

9 Iron-sulphur proteins I. They can be characterised by the following general composition: [Fe II/III a S 2− b ](RS − ) c where: S 2− : sulphide ion (inorganic sulphur) RS − : protein Cys side chain (organic sulphur) General feature: - widely spread in mammals and in plants - participate in one electron steps - the reduction potential is usually negative (0 - − 400with the exception of HIPIP: High Potential Iron Protein = +350 mV) - usually electrontransfer coenzymes of enzyme systems, but e.g. the aconitase itself is an enzyme.

10 Iron-sulphur proteins II. Main types of iron-sulphur proteins: [Fe III (RS − ) 4 ]: rubredoxin [Fe III 2 (S 2− ) 2 ] 2+ RS − ) 4 : plant ferredoxin [Fe II 2 Fe III 2 (S 2− ) 4 ] 2+ (RS − ) 4 : bacterial ferredoxin and HIPIP [Fe II Fe III 2 (S 2− ) 4 ](RS − ) 3 : „irregular” clusters (One edge of the cube is empty, which can be occupied by other metal ions, e.g. Ni, V, Mo,... Further clusters are also possible, e.g. Fe 7 S 8, etc.)

11 Iron-sulphur proteins III. Structures of the iron-sulphur proteins: 1.rubredoxin, [Fe III (RS − ) 4 ]: Iron(III) ion is in a little distorted tetrahedral environment. Reduction is not accompanied by a significant change in geometry. Electrontransfer component of the sulphur-bacteria. 2. Plant-type ferredoxin: [Fe III 2 (S 2− ) 2 ] 2+ (RS − ) 4 In resting state 2 Fe III, but only one of them is reduced to Fe II Fe II −Fe III (1 unpaired electron, significant Fe-Fe interaction, but not complete electron delocalisation

12 Iron-sulphur proteins IV. 3. Fe 4 -S 4 clusters: [Fe III 3 Fe II S 4 ] 3+ [Fe III 2 Fe II 2 S 4 ] 2+ [Fe III Fe II 3 S 4 ] + HIPIP resting state bacterial ferredoxin + 350 mV −400 mV In resting state both Fe 4 -S 4 clusters are in Fe III 2 Fe II 2 state and can take up or release only a single electron. The large difference in the redox potential is explained by the differences in the amino acid sequence of the two proteins.

13 Fe 4 -S 4 Iron-sulphur protein (HIPIP)

14 Occur mostly in plants (preparation from algae) Participate primarily in photosynthesis, as electrontransfer proteins (plastocyanin, azurin, cytochrome c oxidase CuA centre). Characteristics: - low molecular mass (M ~ 10 000 ~ 100 amino acid + 1 db Cu II ) - Intense blue colour λ ~ 600 nm, ε ~ 3000 - 5000 - EPR active, low coupling constant (A || ) - high redox potential (ε ~ + 0.3-0.7 V) (easy to reduce) Action: Cu(II) - SR  Cu(I) +. SR fast process Structure: Cu(II) in unusual chemical environment  distorted tetrahedron (usually:2 His + 1 Cys + 1 Met) Blue copper proteins

15 Plastocyanin I. Relatively low molecular mass. M ~ 10.500 (99 amino acids) Globular protein, cylindrical shape. 420 x 320 x 280 nm → Cu II ion in 60 nm depth.

16 Plastocyanin II. Coordination geometry of Cu II -ion: distorted tetrahedron Bond lengths (nm) Bonds Cu II Cu I Cu I pH=7.0 pH=3.8 Cu-S(Cys)2.132.172.13 Cu-S(Met)2.902.872.51 Cu-N(His 37 )2.042.132.12 Cu-N(His 87 )2.102.39< 4

17

18 Ellenőrző kérdések 1.Mi az elektronszállító fehérjék funkciója a biológiai rendszerekben? Milyen elektronszállító fehérjéket ismer? 2.Jellemezze a citokromokat szerkezeti szempontból! 3.Hasonlítsa össze a vas-kén proteineket és a citokrómokat szerkezeti sajátságaikat tekintve! 4.A vas-kén proteinek milyen kéntartalommal rendelkeznek? 5.Mi a jellemzője a réztartalmú elektrontranszfer fehérjéknek? 6.A kémiai evolúcióban való keletkezésük szempontjából elemezze a vas-kén fehérjék, a citokrómok és a kékréz fehérjék családját!


Download ppt "Electrontransfer proteins. A schematic drawing of the mitochondrium respiratory chain (FMN: flavin mononucleotide, FeS: iron-sulphur protein, Q: ubiquinone,"

Similar presentations


Ads by Google