Presentation is loading. Please wait.

Presentation is loading. Please wait.

Gene, Allele, Genotype, and Phenotype

Similar presentations


Presentation on theme: "Gene, Allele, Genotype, and Phenotype"— Presentation transcript:

1 Gene, Allele, Genotype, and Phenotype
Basic Concepts Gene, Allele, Genotype, and Phenotype A pair of chromosomes Father Mother Phenotype Subject Genotype Height IQ AA AA Gene A, with two alleles A and a Aa Aa aa aa

2 Genetic Mapping A gene that affects a quantitative
Bad news: It is very hard to detect such a gene directly. Genetic Mapping A gene that affects a quantitative trait is called a quantitative trait locus (QTL). A QTL can be detected by the markers linked with it. A QTL detected is a chromosomal segment. Marker 1 QTL Marker 2 Marker 3 Let’s see what are QTL? QTL are specific genomic segments that affect the phenotype. QTL can be detected by linked markers. This is a diagram for detecting QTL by using linked markers. The QTL detected by this approach is hypothetical chromosome segments whose DNA structure and organization are unknown. . Marker k Linkage Map

3 QTL Mapping in Natural Populations
Basic theory for QTL mapping is derived from linkage analysis in controlled crosses There is a group of species in which it is not possible to make crosses QTL mapping in such species should be based on existing populations

4 Human Chromosomes Male Xy X y Female XX X XX Xy Daughter Son

5 Human Difference

6 How many genes control human body height?

7 Discontinuous Distribution
due to a single dwarf gene

8 Continuous Distribution
due to many genes?

9

10 Continuous Variation due to
Polygenes 31=3, 32=9, …, 310=59,049 Environmental modifications Gene-environmental interactions

11 Power statistical methods are crucial for the identification of human height genes

12 Data Structure 1 AA(2) BB(2) … y1 2|1 1|1 0|1 2 AA(2) BB(2) ... y2
Subject Marker (M) Conditional prob M M … Mm Phenotype (y) of QTL genotype QQ(2) Qq(1) qq(0) 1 AA(2) BB(2) … y1 2| 1| 0|1 2 AA(2) BB(2) y2 2| 1| 0|2 3 Aa(1) Bb(1) y3 2| 1|3 0|3 4 y4 2| 1|4 0|4 5 y5 2| 1|5 0|5 6 Aa(1) bb(0) y6 2| 1|6 0|6 7 aa(0) Bb(1) y7 2| 1|7 0|7 8 aa(0) bb(0) … y8 2| 1|8 0|8

13 Association between marker and QTL
Linkage disequilibrium mapping – natural population Association between marker and QTL -Marker, Prob(M)=p, Prob(m)=1-p -QTL, Prob(A)=q, Prob(a)=1-q Four haplotypes: Prob(MA)=p11=pq+D p=p11+p10 Prob(Ma)=p10=p(1-q)-D q=p11+p01 Prob(mA)=p01=(1-p)q-D D=p11p00-p10p01 Prob(ma)=p00=(1-p)(1-q)+D

14 Joint and conditional (j|i) genotype prob. between marker and QTL
AA Aa aa Obs MM p112 2p11p10 p102 n2 Mm 2p11p01 2(p11p00+p10p01) 2p10p00 n1 mm p012 2p01p00 p002 n0 MM p112 2p11p p102 n2 p2 p2 p2 2p(1-p) 2p(1-p) p(1-p) mm p012 2p01p p002 n0 (1-p)2 (1-p)2 (1-p)2

15 Mixture model-based likelihood with marker information
Linkage disequilibrium mapping – natural population Mixture model-based likelihood with marker information L(|y,M)=i=1n[2|if2(yi) + 1|if1(yi) + 0|if0(yi)] Sam- Height Marker genotype QTL genotype ple (cm, y) M AA Aa aa MM (2) 2|1 1|1 0|1 MM (2) 2|2 1|2 0|2 Mm (1) 2|3 1|3 0|3 Mm (1) 2|4 1|4 0|4 Mm (1) 2|5 1|5 0|5 Mm (1) 2|6 1|6 0|6 mm (0) 2|7 1|7 0|7 mm (0) 2|8 1|8 0|8 Prior prob.

16 = i=1n [2|if2(yi) + 1|if1(yi) + 0|if0(yi)]
Linkage disequilibrium mapping – natural population Conditional probabilities of the QTL genotypes (missing) based on marker genotypes (observed) L(|y,M) = i=1n [2|if2(yi) + 1|if1(yi) + 0|if0(yi)] = i=1n2 [2|if2(yi) + 1|if1(yi) + 0|if0(yi)] Conditional on 2 (n2)  i=1n1 [2|if2(yi) + 1|if1(yi) + 0|if0(yi)] Conditional on 1 (n1)  i=1n0 [2|if2(yi) + 1|if1(yi) + 0|if0(yi)] Conditional on 0 (n0)

17 Normal distributions of phenotypic values for each QTL genotype group
Linkage disequilibrium mapping – natural population Normal distributions of phenotypic values for each QTL genotype group f2(yi) = 1/(22)1/2exp[-(yi-2)2/(22)], 2 =  + a f1(yi) = 1/(22)1/2exp[-(yi-1)2/(22)], 1 =  + d f0(yi) = 1/(22)1/2exp[-(yi-0)2/(22)], 0 =  - a

18 Linkage disequilibrium mapping – natural population
Differentiating L with respect to each unknown parameter, setting derivatives equal zero and solving the log-likelihood equations L(|y,M) = i=1n[2|if2(yi) + 1|if1(yi) + 0|if0(yi)] log L(|y,M) = i=1n log[2|if2(yi) + 1|if1(yi) + 0|if0(yi)] Define 2|i = 2|if1(yi)/[2|if2(yi) + 1|if1(yi) + 0|if0(yi)] (1) 1|i = 1|if1(yi)/[2|if2(yi) + 1|if1(yi) + 0|if0(yi)] (2) 0|i = 0|if1(yi)/[2|if2(yi) + 1|if1(yi) + 0|if0(yi)] (3) 2 = i=1n(2|iyi)/ i=1n2|i (4) 1 = i=1n(1|iyi)/ i=1n1|i (5) 0 = i=1n(0|iyi)/ i=1n0|i (6) 2 = 1/ni=1n[2|i(yi-2)2+1|i(yi-1)2+0|i(yi-0)2] (7)

19 Complete data Prior prob QQ Qq qq Obs
MM p112 2p11p10 p102 n2 Mm 2p11p01 2(p11p00+p10p01) 2p10p00 n1 mm p012 2p01p00 p002 n0 MM n22 n21 n20 n2 Mm n12 n11 n10 n1 mm n02 n01 n00 n0 p11=[2n22 + (n21+n12) + n11]/2n, p10=[2n20 + (n21+n10) + (1-)n11]/2n, p01=[2n02 + (n12+n01) + (1-)n11]/2n, p11=[2n00 + (n10+n01) + n11]/2n, =p11p00/(p11p00+p10p01)

20 Incomplete (observed) data Posterior prob QQ Qq qq Obs
MM 2|i 1|i 0|i n2 Mm 2|i 1|i 0|i n1 mm 2|i 1|i 0|i n0 p11=[i=1n2(22|i+1|i)+i=1n1(2|i+1|i)]/2n, (8) p10={i=1n2(20|i+1|i)+i=1n1[0|i+(1-)1|i]}/2n, (9) p01={i=1n0(22|i+1|i)+i=1n1[2|i+(1-)1|i]}/2n, (10) p00=[i=1n2(20|i+1|i)+i=1n1(0|i+1|i)]/2n (11)

21 EM algorithm (1) Give initiate values (0) =(2,1,0,2,p11,p10,p01,p00)(0) (2) Calculate 2|i(1), 1|i(1) and 0|i(1) using Eqs. 1-3, (3) Calculate (1) using 2|i(1), 1|i(1) and 0|i(1) based on Eqs. 4-11, (4) Repeat (2) and (3) until convergence.

22 Hypothesis Tests Is there a significant QTL? H0: μ2 = μ1 = μ1
H1: Not H0 LR1 = -2[ln L0 – L1] Critical threshold determined from permutation tests

23 Hypothesis Tests Can this QTL be detected by the marker? H0: D = 0
H1: Not H0 LR2 = -2[ln L0 – L1] Critical threshold determined from chi-square table (df = 1)

24 A case study from human populations
105 black women and 538 white women; 10 SNPs genotyped within 5 candidates for human obesity; Two obesity traits, the amount of body fat (body mass index, BMI) and its distribution throughout the body (waist to hip circumference ratio, WHR)

25

26

27 Objective Detect quantitative trait nucleotides (QTNs) predisposing to human obesity traits, BMI and WHR

28 BMI SNP Chrom. Black White ADRA1A 8p q D a d LR * NS WHR ADRB1 10q q D a d LR * NS ADRB2 5q q D a d LR * NS ADRB2- 5/20 q GNAS1 D a d LR * *

29 Shape mapping meets LD mapping Mapping Body Shape Genes through Shape Mapping Ningtao Wang, Yaqun Wang, Zhong Wang, Han Hao and Rongling Wu* Center for Statistical Genetics, The Pennsylvania State University, Hershey, PA 17033, USA J Biom Biostat 2012, 3:8


Download ppt "Gene, Allele, Genotype, and Phenotype"

Similar presentations


Ads by Google