Download presentation
Presentation is loading. Please wait.
1
Logic Design with MSI Circuits
วัตถุประสงค์ของบทเรียน รู้จักวงจรประเภท MSI เข้าใจการทำงานของวงจร MSI ที่มีใช้อยู่ทั่วไป สามารถประยุกต์ใช้วงจร MSI ในการออกแบบวงจรลอจิกแบบต่างๆ ได้ 1/2550 A. Yaicharoen
2
Type of Circuits หมายเหตุ หนังสือบางเล่มแบ่งวงจรที่มีเกตตั้งแต่ 1,000,000 เกต ขึ้นไป ให้อยู่ในกลุ่ม ULSI (Ultra-large-scale integration) 1/2550 A. Yaicharoen
3
Multiplexers (MUXs) also called a data selector Input lines consist of
- data lines: 2n lines - select lines: n lines there may or may not be an enable line Output line: output line: 1 line 1/2550 A. Yaicharoen
4
Multiplexer Function Truth table of a 4:1 multiplexer (without enable)
Select inputs Output S1 S0 Y I0 1 I1 I2 I3 1/2550 A. Yaicharoen
5
Multiplexer Function Truth table of a 4:1 multiplexer (with enable)
Select inputs Output E S1 S0 Y X 1 I0 I1 I2 I3 1/2550 A. Yaicharoen
6
Logic Circuit Design using Multiplexer
Advantages No need for logic simplification Minimize the IC package count Simplify the logic design 1/2550 A. Yaicharoen
7
Case 1: Number of inputs is equal to number of select lines
Logic Design using MUX Case 1: Number of inputs is equal to number of select lines Design procedure Identify the decimal number corresponding to each minterm in the expression Connect logic 1 level to input lines corresponding to these numbers Connect logic 0 level to the others Connect inputs to selected lines 1/2550 A. Yaicharoen
8
Case1: Inputs = Select lines
a three-variable function using a 8-to-1-line multiplexer 1/2550 A. Yaicharoen
9
Example f(x,y,z) = m(0,2,3,5) using 8-to-1-line multiplexer 1/2550
A. Yaicharoen
10
Case 2: Number of inputs is higher than number of select lines
Logic Design using MUX Case 2: Number of inputs is higher than number of select lines Procedure 2.1: Reduce the number of inputs to the number of select lines by inspection k-map 1/2550 A. Yaicharoen
11
Case 2 Truth table of a 3 variable logic circuit Input Output x y z Y
f0 1 f2 f4 f6 Input Output x y z Y 1 f1 f3 f5 f7 1/2550 A. Yaicharoen
12
Case2.1: Reducing Inputs a 3-variable Boolean function using a 4-to-1-line multiplexer 1/2550 A. Yaicharoen
13
Example f(x,y,z) = m(0,2,3,5) using a 4-to-1-line multiplexer 1/2550
A. Yaicharoen
14
Reducing Inputs with K-map
1/2550 A. Yaicharoen
15
Example f(x,y,z) = m(0,2,3,5) 1/2550 A. Yaicharoen
16
More on Reducing Inputs
(a) Applying input variables y and z to the S1 and S0 select lines. (b) Applying input variables x and y to the S0 and S1 select lines. 1/2550 A. Yaicharoen
17
Example f(x,y,z) = m(0,2,3,5) (a) Applying input variables y and z to the S1 and S0 select lines. (b) Applying input variables x and y to the S0 and S1 select lines. 1/2550 A. Yaicharoen
18
Reducing 4-input to 3-input
1/2550 A. Yaicharoen
19
Example f(w,x,y,z) = m(0,1,5,6,7,9,12,15) 1/2550 A. Yaicharoen
20
Procedure 2.2: Use multiplexer tree
Logic Design using MUX Procedure 2.2: Use multiplexer tree when number of inputs exceeds the largest number of inputs on available ICs Can be done by one of these two techniques connect the MSB input to the enable/strobe input connect the MSB input to another multiplexer 1/2550 A. Yaicharoen
21
Demultiplexers/Decoders
Performs the reverse operation of a multiplexer Input lines are: 1 data line n select lines maybe 1 enable Output lines are - 2n output lines 1/2550 A. Yaicharoen
22
Application Example A multiplexer/demultiplexer arrangement for information transmission 1/2550 A. Yaicharoen
23
Decoders A n-to-2n-line decoder is a circuit that only one of the output line responds to the n-input data. Number of input:output is n:2n (Note: a demultiplexer is a decoder with an enable input acting as a data input line A BCD to 7-segment decoder is a circuit that 7-bit output will make each segment of the 7-segment lit according to the 4-bit input 1/2550 A. Yaicharoen
24
3-to-8-line Decoder 1/2550 A. Yaicharoen
25
Application Example การใช้ 3-to-8-line decoder และ or-gate ในการสร้างวงจร f1(x2,x1,x0) = m(1,2,4,5) และ f2(x2,x1,x0) = m(1,5,7) 1/2550 A. Yaicharoen
26
Application Example f1(x2,x1,x0) = m(0,1,3,4,5,6)
= m(2,7) and f2(x2,x1,x0) = m(1,2,3,4,6) = m(0,5,7) 1/2550 A. Yaicharoen
27
Application Example f1(x2,x1,x0) = M(0,1,3,5) and f2(x2,x1,x0) = M(1,3,6,7) (a) Using output or-gates. (b) Using output nor-gates. 1/2550 A. Yaicharoen
28
3-to-8-line decoder using nand-gates
1/2550 A. Yaicharoen
29
Application Example f1(x2,x1,x0) = m(0,2,6,7) and f2(x2,x1,x0) = m(3,5,6,7) (a) Using output and-gates. (b) Using output nand-gates. 1/2550 A. Yaicharoen
30
Decoder with Enable Input
And-gate 2-to-4-line decoder with an enable input 1/2550 A. Yaicharoen
31
Encoders - Similar to decoders
- Usually number of input lines are more than number of output lines Number of input:output is 2n:n 1/2550 A. Yaicharoen
32
Binary Adders Binary Half-Adder Binary Full-Adder 1/2550 A. Yaicharoen
33
si = xi'.yi'.ci+xi'.yi.ci'+xi.yi'.ci'+xi.yi.ci
Binary Full-Adder si = xi'.yi'.ci+xi'.yi.ci'+xi.yi'.ci'+xi.yi.ci ci+1 = xi.yi + xi.ci + yi.ci 1/2550 A. Yaicharoen
34
Parallel Binary Adder Parallel (ripple) binary adder 1/2550
A. Yaicharoen
35
Binary Subtractor Binary Half-Subtractor Binary Full-Subtractor 1/2550
A. Yaicharoen
36
Parallel Binary Subtractor
Parallel (ripple) binary subtractor 1/2550 A. Yaicharoen
37
Parallel Binary Adder/Subtractor
1/2550 A. Yaicharoen
38
Carry Look-ahead Adder
From Boolean expression of the F.A. ci+1 = xiyi + (xi+yi)ci Let’s gi = xiyi (carry-generate function) and pi = (xi+yi) (carry-propagate function) c1 = g0 + p0c0 c2 = g1 + p1c1 = g1 + p1(g0 + p0c0) = g1 + p1g0 + p1p0c0 1/2550 A. Yaicharoen
39
Carry Look-ahead Adder (cont.)
c3 = g2 + p2c2 = g2 + p2(g1 + p1g0 + p1p0c0) = g2 + p2g1 + p2p1g0 + p2p1p0c0 ... ci+1 = gi + pigi-1 + pipi-1gi + pipi-1...p1g0 + pipi-1...p0c0 1/2550 A. Yaicharoen
40
Carry Look-ahead Adder (cont.)
1/2550 A. Yaicharoen
41
BCD Arithmetic BCD Adder
Using a 4-bit binary adder to perform two one digit BCD addition a decimal 6 (binary ) will be added to the result if the sum output is an invalid BCD or if a carry at the MSB is 1 each BCD adder can be cascaded for adding several BCD digits 1/2550 A. Yaicharoen
42
BCD Arithmetic BCD Subtractor
Convert the subtrahend to its 9’s complement form Add the result to the minuend If the summation result is an invalid BCD code or if the carry from the MSB is 1, add decimal 6 (binary ) and the end around carry (EAC) to this sum If the summation result is a valid BCD code, the result is negative and in the 9’s complement form 1/2550 A. Yaicharoen
43
Nine’s Complementer Circuit
A 9’s complementer circuit is a circuit designed to convert a decimal digit (in BCD code) to its 9’s complement created by adding binary to the 1’s complement of the number (ignore the carry) (Proof is left as a student exercise) 1/2550 A. Yaicharoen
44
Arithmetic Logic Unit (ALU)
performs arithmetic and logic operations (depends on the selected mode) Read details and example in section 6.6 1/2550 A. Yaicharoen
45
Comparators A comparator is a circuit that compares the magnitudes of two binary numbers Input: Ai, Bi, Gi, Ei, Li Gi= 1 when Ai-1Ai-2...A1A0 > Bi-1Bi-2...B1B0 Ei= 1 when Ai-1Ai-2...A1A0 = Bi-1Bi-2...B1B0 Li= 1 when Ai-1Ai-2...A1A0 < Bi-1Bi-2...B1B0 Output: Gi+1, Ei+1, Li+1 Gi+1= 1 when AiAi-1...A1A0 > BiBi-1...B1B0 Ei+1= 1 when AiAi-1...A1A0 = BiBi-1...B1B0 Li+1= 1 when AiAi-1...A1A0 < BiBi-1...B1B0 1/2550 A. Yaicharoen
46
1-bit Comparator 1/2550 A. Yaicharoen
47
Other MSI Circuits Parity generators/checkers Code converters
BCD-to-binary converter Binary-to-BCD converter Priority encoders Decimal-to-BCD encoder Octal-to-binary Encoder Decoder/drivers for display devices BCD-to-decimal decoder/driver BCD-to-7-segment decoder/driver 1/2550 A. Yaicharoen
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.