Download presentation
Presentation is loading. Please wait.
Published byMargaretMargaret Tiffany Fowler Modified over 9 years ago
1
Fundamentals of IT UNIT-I OnlyforIPMCA
2
DIGITAL SIGNALS & LOGIC GATES Signals and data are classified as analog or digital. Analog refers to something that is continuous- a set of data and all possible points between. An example of analog data is the human voice. Digital refers to something that is discrete –a set of specific points of data with no other points in between. An example of digital data is data stored in the memory of a computer in the form of 0s and 1s. OnlyforIPMCA
3
Contd.. An analog signal is a continuous wave form that changes smoothly. As the wave moves from a value A to a value B, it passes through and includes an infinite number of values along its path. A digital signal can have only a limited number of defined values, often as simple as 1 and 0. OnlyforIPMCA
5
Comparison of analog and digital signals Signals can be analog or digital. Analog signals can have an infinite number of values in a range; digital signals can have only a limited number of values. OnlyforIPMCA
6
LOGIC GATES Logic diagram: a graphical representation of a circuit – Each type of gate is represented by a specific graphical symbol Truth table: defines the function of a gate by listing all possible input combinations that the gate could encounter, and the corresponding output OnlyforIPMCA
7
Let’s examine the processing of the following six types of gates – NOT – AND – OR – XOR – NAND – NOR Typically, logic diagrams are black and white, and the gates are distinguished only by their shape OnlyforIPMCA
8
NOT GATE A NOT gate accepts one input value and produces one output value OnlyforIPMCA
9
AND GATE An AND gate accepts two input signals If the two input values for an AND gate are both 1, the output is 1; otherwise, the output is 0 OnlyforIPMCA
10
OR GATE If the two input values are both 0, the output value is 0; otherwise, the output is 1 OnlyforIPMCA
11
XOR GATE XOR, or exclusive OR, gate – An XOR gate produces 0 if its two inputs are the same, and a 1 otherwise When both input signals are 1, the OR gate produces a 1 and the XOR produces a 0 OnlyforIPMCA
12
NAND & NOR The NAND and NOR gates are essentially the opposite of the AND and OR gates, respectively OnlyforIPMCA
13
Number Systems SystemBaseSymbols Used by humans? Used in computers? Decimal100, 1, … 9YesNo Binary20, 1NoYes Octal80, 1, … 7No Hexa- decimal 160, 1, … 9, A, B, … F No OnlyforIPMCA
14
Quantities/Counting (1 of 3) DecimalBinaryOctal Hexa- decimal 0000 1111 21022 31133 410044 510155 611066 711177 OnlyforIPMCA
15
Quantities/Counting (2 of 3) DecimalBinaryOctal Hexa- decimal 81000108 91001119 10101012A 11101113B 12110014C 13110115D 14111016E 15111117F OnlyforIPMCA
16
Quantities/Counting (3 of 3) DecimalBinaryOctal Hexa- decimal 16100002010 17100012111 18100102212 19100112313 20101002414 21101012515 22101102616 23101112717 Etc. OnlyforIPMCA
17
Conversion Among Bases The possibilities: Hexadecimal DecimalOctal Binary OnlyforIPMCA
18
Decimal to Decimal (just for fun) Hexadecimal DecimalOctal Binary OnlyforIPMCA
19
125 10 =>5 x 10 0 = 5 2 x 10 1 = 20 1 x 10 2 = 100 125 Base Weight OnlyforIPMCA
20
Binary to Decimal Hexadecimal DecimalOctal Binary OnlyforIPMCA
21
Binary to Decimal Technique – Multiply each bit by 2 n, where n is the “weight” of the bit – The weight is the position of the bit, starting from 0 on the right – Add the results OnlyforIPMCA
22
Example 101011 2 => 1 x 2 0 = 1 1 x 2 1 = 2 0 x 2 2 = 0 1 x 2 3 = 8 0 x 2 4 = 0 1 x 2 5 = 32 43 10 Bit “0” OnlyforIPMCA
23
Octal to Decimal Hexadecimal DecimalOctal Binary OnlyforIPMCA
24
Octal to Decimal Technique – Multiply each bit by 8 n, where n is the “weight” of the bit – The weight is the position of the bit, starting from 0 on the right – Add the results OnlyforIPMCA
25
Example 724 8 => 4 x 8 0 = 4 2 x 8 1 = 16 7 x 8 2 = 448 468 10 OnlyforIPMCA
26
Hexadecimal to Decimal Hexadecimal DecimalOctal Binary OnlyforIPMCA
27
Hexadecimal to Decimal Technique – Multiply each bit by 16 n, where n is the “weight” of the bit – The weight is the position of the bit, starting from 0 on the right – Add the results OnlyforIPMCA
28
Example ABC 16 =>C x 16 0 = 12 x 1 = 12 B x 16 1 = 11 x 16 = 176 A x 16 2 = 10 x 256 = 2560 2748 10 OnlyforIPMCA
29
Decimal to Binary Hexadecimal DecimalOctal Binary OnlyforIPMCA
30
Decimal to Binary Technique – Divide by two, keep track of the remainder – First remainder is bit 0 (LSB, least-significant bit) – Second remainder is bit 1 – Etc. OnlyforIPMCA
31
Example 125 10 = ? 2 2 125 62 1 2 31 0 2 15 1 2 7 1 2 3 1 2 1 1 2 0 1 125 10 = 1111101 2 OnlyforIPMCA
32
Decimal to Octal Hexadecimal DecimalOctal Binary OnlyforIPMCA
33
Decimal to Octal Technique – Divide by 8 – Keep track of the remainder OnlyforIPMCA
34
Example 1234 10 = ? 8 8 1234 154 2 8 19 2 8 2 3 8 0 2 1234 10 = 2322 8 OnlyforIPMCA
35
Decimal to Hexadecimal Hexadecimal DecimalOctal Binary OnlyforIPMCA
36
Decimal to Hexadecimal Technique – Divide by 16 – Keep track of the remainder OnlyforIPMCA
37
Example 1234 10 = ? 16 1234 10 = 4D2 16 16 1234 77 2 16 4 13 = D 16 0 4 OnlyforIPMCA
38
Octal to Binary Hexadecimal DecimalOctal Binary OnlyforIPMCA
39
Octal to Binary Technique – Convert each octal digit to a 3-bit equivalent binary representation OnlyforIPMCA
40
Example 705 8 = ? 2 7 0 5 111 000 101 705 8 = 111000101 2 OnlyforIPMCA
41
Hexadecimal to Binary Hexadecimal DecimalOctal Binary OnlyforIPMCA
42
Hexadecimal to Binary Technique – Convert each hexadecimal digit to a 4-bit equivalent binary representation OnlyforIPMCA
43
Example 10AF 16 = ? 2 1 0 A F 0001 0000 1010 1111 10AF 16 = 0001000010101111 2 OnlyforIPMCA
44
Binary to Octal Hexadecimal DecimalOctal Binary OnlyforIPMCA
45
Binary to Octal Technique – Group bits in threes, starting on right – Convert to octal digits OnlyforIPMCA
46
Example 1011010111 2 = ? 8 1 011 010 111 1 3 2 7 1011010111 2 = 1327 8 OnlyforIPMCA
47
Binary to Hexadecimal Hexadecimal DecimalOctal Binary OnlyforIPMCA
48
Binary to Hexadecimal Technique – Group bits in fours, starting on right – Convert to hexadecimal digits OnlyforIPMCA
49
Example 1010111011 2 = ? 16 10 1011 1011 2 B B 1010111011 2 = 2BB 16 OnlyforIPMCA
50
Octal to Hexadecimal Hexadecimal DecimalOctal Binary OnlyforIPMCA
51
Octal to Hexadecimal Technique – Use binary as an intermediary OnlyforIPMCA
52
Example 1076 8 = ? 16 1 0 7 6 001 000 111 110 2 3 E 1076 8 = 23E 16 OnlyforIPMCA
53
Hexadecimal to Octal Hexadecimal DecimalOctal Binary OnlyforIPMCA
54
Hexadecimal to Octal Technique – Use binary as an intermediary OnlyforIPMCA
55
Example 1F0C 16 = ? 8 1 F 0 C 0001 1111 0000 1100 1 7 4 1 4 1F0C 16 = 17414 8 OnlyforIPMCA
56
Exercise – Convert... Don’t use a calculator! DecimalBinaryOctal Hexa- decimal 33 1110101 703 1AF Skip answer Answer OnlyforIPMCA
57
Exercise – Convert … DecimalBinaryOctal Hexa- decimal 331000014121 117111010116575 4511110000117031C3 4311101011116571AF Answer OnlyforIPMCA
58
Binary Addition (1 of 2) Two 1-bit values ABA + B 000 011 101 1110 “two” OnlyforIPMCA
59
Binary Addition (2 of 2) Two n-bit values – Add individual bits – Propagate carries – E.g., 10101 21 + 11001 + 25 101110 46 11 OnlyforIPMCA
60
Multiplication (1 of 3) Decimal (just for fun) 35 x 105 175 000 35 3675 OnlyforIPMCA
61
Binary Multiplication AB A B 000 010 100 111 OnlyforIPMCA
62
Multiplication Binary, two n-bit values – As with decimal values – E.g., 1110 x 1011 1110 1110 0000 1110 10011010 OnlyforIPMCA
63
Fractions Decimal to decimal (just for fun) 3.14 =>4 x 10 -2 = 0.04 1 x 10 -1 = 0.1 3 x 10 0 = 3 3.14 OnlyforIPMCA
64
Fractions Fractions - Binary to decimal 10.1011 => 1 x 2 -4 = 0.0625 1 x 2 -3 = 0.125 0 x 2 -2 = 0.0 1 x 2 -1 = 0.5 0 x 2 0 = 0.0 1 x 2 1 = 2.0 2.6875 OnlyforIPMCA
65
Fractions Decimal to binary 3.14579.14579 x 2 0.29158 x 2 0.58316 x 2 1.16632 x 2 0.33264 x 2 0.66528 x 2 1.33056 etc. 11.001001... OnlyforIPMCA
66
Exercise – Convert... Don’t use a calculator! DecimalBinaryOctal Hexa- decimal 29.8 101.1101 3.07 C.82 OnlyforIPMCA
67
Exercise – Convert … DecimalBinaryOctal Hexa- decimal 29.811101.110011…35.63…1D.CC… 5.8125101.11015.645.D 3.10937511.0001113.073.1C 12.50781251100.1000001014.404C.82 Answer OnlyforIPMCA
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.