Download presentation
Presentation is loading. Please wait.
Published byMilton White Modified over 9 years ago
1
讲 座 提 纲讲 座 提 纲 1 什么是分子育种 2 历史回顾 3 全基因组策略 4 基因型鉴定 5 表现型鉴定 6 环境型鉴定 (etyping) 7 标记 - 性状关联分析 8 标记辅助选择 9 决策支撑系统 10 展望
2
Large-scale resequencing (whole genome and target regions) Stage one: 100 core maize lines (2010) … Stage N: all maize lines (201X) Multi-location precision phenotyping and etyping Whole genome association studies (GWAS) for gene and allele discovery and functional analysis Genomewide selection for complex and multiple traits Future Prospects
3
Increased Food and Ecosystem Security via Perennial Grains J. D. Glover, J. P. Reganold, L. W. Bell, J. Borevitz, E. C. Brummer, E. S. Buckler, C. M. Cox, T. S. Cox, T. E. Crews, S. W. Culman, L. R. DeHaan, D. Eriksson, B. S. Gill, J. Holland, F. Hu, B. S. Hulke, A. M. H. Ibrahim, W. Jackson, S. S. Jones, S. C. Murray, A. H. Paterson, E. Ploschuk, E. J. Sacks, S. Snapp, D. Tao, D. L. Van Tassel, L. J. Wade, D. L. Wyse, Y. Xu Perennial grains hold promise, especially for marginal landscapes or with limited resources where annual versions struggle. SCIENCE (2010) 328: 1368-1369 Whole Genome Strategies for a New Breeding Target
4
Ecosystem functions of annual and perennial crops
5
Why Is It Possible Now Large-size populations High density molecular markers Break the tight linkage between perenniality and wild traits Bring complex traits together more efficiently than ever Rice as an example for grains Dr. Fengyi Hu at Yunnan AAS, China Maize as an example for forages Prof. Tingzhao Rong and his group at SCAU, China
6
Bottlenecks in Marker-Assisted Molecular Breeding Need of integrated plant breeding platforms Establishment of molecular breeding networks Improved precision phenotyping and etyping systems Effective and efficient information management and analysis Complexity of crops with polyploidy chromosomes and high genetic diversity 育种的集成化、规模化、 程序化
7
National Molecular Breeding Network Why Large-scale and pipeline based breeding calls for integrated breeding platform Genotyping platform available allows to establish a common platform for all crops It is not possible to establish independent molecular breeding platforms by individual small companies and institutions Sharing platforms can perform more efficiently and effectively
8
National Molecular Breeding Network How National Genotyping Service Centers (Beijing, Shanghai, Guangzhou) Phenotyping Standardization and Demonstration Centers (cereals, vegetables, fruits) Etyping Standardization and Demonstration Centers (cereals, vegetables, fruits) Information Management Centers (Beijing, Shanghai, Guangzhou)
9
Molecular breeding scientists support the adoption and use of new tools MB scientist Line breeder 3 Line breeder 2 Line breeder 1 Application team 1 Application team 2 Application team 3 A Breeding Team for Modern Plant Breeding
10
G E P Genotype Phenotype Point Line Plane Space 4-D Profile of Plant Breeding Single phenotype Multiple phenotype Multi-phenotype assisted by genotype Multi-phenotype across environments assisted by genotype Revised from Xu et al. 2012 Mol Breed 29:833–854 Multi-phenotype across environments and time series assisted by genotype G E P G E P G E P Time
11
Challenges + Opportunities Reduced cost while increasing the scale and efficiency High throughput genotyping, phenotyping and etyping platforms Effective information management and data analysis Powerful decision support tools Marker-assisted breeding as a routine practice in many breeding programs The Future of Plant Breeding
12
Specific genomic regions Genotypes and genes Alleles or haplotypes Optimized gene networks Specific Phenotypes and Products Whole Genome Strategies: Product
13
Maize Molecular Breeding Laboratory CIMMYT-CAAS Joint International Research Center for Applied Genomics and Molecular Breeding http://www.ccmaize.org y.xu@cgiar.org 谢 谢谢 谢
14
思 考 题 1. 规模化分子育种一般需要哪些支撑平台? 每 个平台的基本要素是什么? 2. 简要描述性状 - 标记关联分析的基本思路 3. 简述分子标记辅助选择育种的基本方法及其应用 作物分子育种理论与应用
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.