Download presentation
Presentation is loading. Please wait.
Published byRoger Elliott Modified over 9 years ago
2
Radiochemistry - The Integration of Physics and Chemistry - the Beginnings 1789- KlaprothUranium discovered 1841- PeligotUranium isolated 1895 - RoentgenX - rays 1896 - BecquerelRadioactivity 1898 - The CuriesRadium and Polonium 1899 - RutherfordAlpha & beta particles 1904 - Rutherford & SoddyTheory of radioactivity 1911 - RutherfordModel of the atom 1913 - BohrModel of the atom SoddyIsotopes of elements
3
Radiochemistry - The Integration of Physics and Chemistry - the Continuation 1918 - AstonIdentifies isotopes of neon 1919 - Rutherford & ChadwickArtificial elemental transmutation 1932 - ChadwickNeutron UreyIsolates deuterium an isotope of hydrogen 1934 - Joliot-CuriesArtificial radioactivity Fermi‘Transuranium’ elements NoddackSuggests possibility of fission 1935 - FermiNeutron moderation DempsterDiscovery of U-235 1936 - BohrLiquid drop model of nucleus 1938 - Hahn & StraussmanChemical verification of fission 1939 - Meitner & FrischExplanation of Hahn’s results 1941 - SeaborgPlutonium
10
X U Th Number of protons Number of neutrons α β X is a “new” transuranium element Keeping nuclear transformations in the neighborhood
12
Hahn and Straussman Chemical Discovery of Fission Berlin, December 1938 Neutron source Uranium compounds Ra (III) + Acid Ra (III) soln + BaCl 2 carrier soln Ra (III) & Ba 2+ soln Ra (III) & Ba 2+ soln Ra (III) soln H 2 CO 3 soln Soln & BaCO 3 (s) Ra(III)CO 3 BaCO 3 (s) Ra(III)CO 3 + HBr + Ra (III) & Ba 2+ soln Ra (III) & Ba 2+ soln Fractional crystallization Could not separate Ra(III) from Ba ! n1n1 o n1n1 o
19
The Beginning of the Manhattan Project Albert Einstein and Leo Szilard Long Island, New York August 1939
24
Established April 1940 as a result of the Frisch-Peirerls Memo Functioned under the ministry of Aircraft production Final report completed July 1941 was most useful to the U.S. Directed by Prof. G. P. Thomson, J.J.’s son British MAUD Committee CambridgeBirminghamOxford Liverpool I.C.I. (fundamental(U-235 bomb)(Separation (fundamental (chemical nuclear properties)of U-235) nuclear properties) problems) CockcrofHaworthSimon Chadwick Baxter BraggPeirels Frisch HalbanFuchs Kowarski
27
Seaborg’s diary entry on the discovery of element atomic number 94
28
Seaborg’s discovery that element 94 undergoes fission
29
Neutron cross sections fission non-fission U-238 U-235 Pu-239 Neutron energy 25 ev1 Mev (slow)(fast) Results of Neutron Interactions with Uranium and Plutonium Isotopes
32
Possible Routes to Fissionable Materials Considered by U. S. in 1942 Natural Uranium (99.3% U-238, 0.7% U-235) Gaseous Diffusion Electromagnetic Separation Centrifugation Liquid Thermal Diffusion U-235 Uranium-graphite reactor Uranium-heavy water reactor Pu-239
33
Uranium Metallurgy
36
Methods Used to Separate U-235 from U-238
37
Gaseous Diffusion K-25 Plant Oak Ridge
39
Calutrons at the Y-12 Plant Oak Ridge
40
Y-12 Electromagnetic Separation Plant Oak Ridge
41
Production of weapons grade U-235 Oak Ridge, TN - 1944-45 Natural uranium U-235 (0.7 %) UF 6 (g) U-235 (0.86%) UF 6 (g) U-235 (7%) UF 4 (s) Product U-235 (90%) UF 4 (s) U-235 (15%) UF 4 (s) S-50 Thermal Diffusion K-25 Gaseous Diffusion Y-12 Alpha Calutrons Y-12 Beta Calutrons
43
Production of Plutonium From Uranium in a Nuclear Reactor
46
Fuel Fabrication Prepare fissile material to fuel nuclear reactors.
48
Naturally Occurring Uranium U-235 (0.7%) U-238 (99.3%) Hanford Irradiated Fuel U-235 (<1%) other radioactive isotopes including Pu-239 (<1%) U-238 (>98%) 4000 grams of irradiated uranium produce approximately 1 gram Pu-239
49
Pu Recovery by Bismuth Phosphate Process Pu is found in low concentrations (<250 ppm) in reactor products. Weapons grade Pu must be chemically pure (< 1 part in 10 7 parts Pu). The Pu recovery for total process was 95% with < 1 part impurity in 10 7. Pu(s) + X(s) HNO 3 Pu 4+ (aq) + X y+ (aq) H 2 SO 4 Pu 4+ (aq) + X y+ (aq) + Bi 3+ (aq)Pu 3 (PO) 4 (s) +X y+ (aq) + BiPO 4 (s) Pu 3 (PO) 4 (s) +BiPO 4 (s) HNO 3 oxid. agent Pu 6+ (aq) +Bi 3+ (aq) Pu 6+ (aq) +Bi 3+ (aq) H 3 PO 4 Pu 6+ (aq) + BiPO 4 (s) Pu 6+ (aq) H2O2H2O2 PuO 2 2+ (aq)Pu(s) reducing agent X(s) = fission products or uranium; y+ = oxidation state Plutonium was redissolved and further purified using LaF 2 in place of BiPO 4 (s)
51
Inside Hanford T Plant
63
Little Boy - Hiroshima - 0815, August 6, 1945 Size:10 ft long Weight:8.900 lbs. (132 lbs >90% U-235) (~ 2lbs underwent fission) Height of blast: 1900 ft. Yield:15 - 16 Kt TNT Casualties~ 100,000 immediate deaths ~ 200,000 total deaths
64
Fat Man - Nagasaki - 1102, August 9, 1945 Size:~ 10.5 ft long, 5ft. Diameter Weight:10,300 lbs.. (12 lbs.. Pu-239 of which ~ 2 lbs. underwent fission) Height of blast:1650 ft. Yield:22 Kt of TNT Casualties:~70,000 immediate deaths ~140,000 total deaths
71
Steps in Producing a Nuclear Weapon Mining, milling, and refining Mining, milling, and refining Isotope separation (enrichment) Isotope separation (enrichment) Fuel and target fabrication Fuel and target fabrication Reactor operations Chemical Separations Chemical Separations Component fabrication Component fabrication Testing Weapons operations Weapons operations
77
Fuel rod fabrication plant in Yongbyon, North Korea
78
Map of DPRK Nuclear Sites
82
http://alsos.wlu.edu
83
http://www.chemcases.com/2003version/nuclear/index2.htm
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.