Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by.

Similar presentations


Presentation on theme: "1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by."— Presentation transcript:

1 1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Supplementary Slides for Software Engineering: A Practitioner's Approach, 5/e Supplementary Slides for Software Engineering: A Practitioner's Approach, 5/e copyright © 1996, 2001 R.S. Pressman & Associates, Inc. For University Use Only May be reproduced ONLY for student use at the university level when used in conjunction with Software Engineering: A Practitioner's Approach. Any other reproduction or use is expressly prohibited. This presentation, slides, or hardcopy may NOT be used for short courses, industry seminars, or consulting purposes.

2 2 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Chapter 14 Architectural Design

3 3 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Agenda  Software Architecture  Data Design  Architectural Style  Analyzing Alternative Architectural Designs  Mapping Requirements into a Software Architecture  Transform Mapping  Transaction Mapping  Refining the Structural Design

4 4 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Why Architecture? The architecture is not the operational software. Rather, it is a representation that enables a software engineer to: (1) analyze the effectiveness of the design in meeting its stated requirements, (2) consider architectural alternatives at a stage when making design changes is still relatively easy, and (3) reduce the risks associated with the construction of the software.

5 5 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Data Design  refine data objects and develop a set of data abstractions  implement data object attributes as one or more data structures  review data structures to ensure that appropriate relationships have been established  simplify data structures as required

6 6 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Data Design (Cont’d)  Data Base Management Systems  Knowledge Discovery in Databases (Data Mining)  Data Warehouses  Data warehouses vs. Databases  Subject orientation  Integration  Time variancy  Nonvolatility

7 7 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Data Design—Component Level 1. The systematic analysis principles applied to function and behavior should also be applied to data. 2. All data structures and the operations to be performed on each should be identified. 3. A data dictionary should be established and used to define both data and program design. 4. Low level data design decisions should be deferred until late in the design process. 5. The representation of data structure should be known only to those modules that must make direct use of the data contained within the structure. 6. A library of useful data structures and the operations that may be applied to them should be developed. 7. A software design and programming language should support the specification and realization of abstract data types.

8 8 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Architectural Styles  Data-centered architectures  Data flow architectures  Call and return architectures  Object-oriented architectures  Layered architectures Each style describes a system category that encompasses: (1) a set of components (e.g., a database, computational modules) that perform a function required by a system, (2) a set of connectors that enable “communication, coordination and cooperation” among components, (3) constraints that define how components can be integrated to form the system, and (4) semantic models that enable a designer to understand the overall properties of a system by analyzing the known properties of its constituent parts.

9 9 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Data-Centered Architecture

10 10 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Data Flow Architecture

11 11 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Call and Return Architecture

12 12 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Layered Architecture

13 13 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Analyzing Architectural Design Architecture Trade off Analysis Method(ATAM) 1.Collect scenarios. 2. Elicit requirements, constraints, and environment description. 3. Describe the architectural styles/patterns that have been chosen to address the scenarios and requirements by: module view module view process view process view data flow view data flow view 4. Evaluate quality attributes by considering each attribute in isolation. 5. Identify the sensitivity of quality attributes to various architectural attributes for a specific architectural style. 6. Critique candidate architectures (developed in step 3) using the sensitivity analysis conducted in step 5.

14 14 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Analyzing Architectural Design Quantitative(pseudo) Guidelines for Architectural Design  Spectrum Analysis Assigning a score to each design dimensions. Sum the scores(S). Sw: Worst case, Sb: Best case, Compute Spectrum index: Is =[(S – Sw)/(Sb – Sw)] * 100 Is =[(S – Sw)/(Sb – Sw)] * 100 Imp = Is1 – Is2  Design Selection Index( d=(Ns/Na) * 100 ) Ns: Number of design dimensions achieved, Na: Total no of DD. Ns: Number of design dimensions achieved, Na: Total no of DD.  Contribution Analysis

15 15 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Architectural Complexity  Similar to Coupling  Sharing Dependencies  Flow Dependencies( producer and consumer )  Constraint Dependencies ( flow of control among a set of activities )

16 16 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 An Architectural Design Method "four bedrooms, three baths, lots of glass..." customer requirements architectural design

17 17 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Deriving Program Architecture ProgramArchitecture

18 18 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Partitioning the Architecture  “horizontal” and “vertical” partitioning are required

19 19 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Horizontal Partitioning  define separate branches of the module hierarchy for each major function  use control modules to coordinate communication between functions function 1 function 3 function 2

20 20 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Vertical Partitioning: Factoring  design so that decision making and work are stratified  decision making modules should reside at the top of the architecture workers decision-makers

21 21 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Why Partitioned Architecture?  results in software that is easier to test  leads to software that is easier to maintain  results in propagation of fewer side effects  results in software that is easier to extend

22 22 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Structured Design  objective: to derive a program architecture that is partitioned  approach:  the DFD is mapped into a program architecture  the PSPEC and STD are used to indicate the content of each module  notation: structure chart

23 23 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Flow Characteristics Transform flow Transaction flow

24 24 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 General Mapping Approach isolate incoming and outgoing flow boundaries; for transaction flows, isolate the transaction center working from the boundary outward, map DFD transforms into corresponding modules add control modules as required refine the resultant program structure using effective modularity concepts

25 25 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Transform Mapping

26 26 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Factoring

27 27 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 First Level Factoring main program controller input controller processing controller output controller

28 28 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Second Level Mapping

29 29 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Transaction Flow T incoming flow Action path

30 30 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Transaction Mapping Principles isolate the incoming flow path define each of the action paths by looking for the "spokes of the wheel" assess the flow on each action path define the dispatch and control structure map each action path flow individually

31 31 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Transaction Mapping

32 32 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Refining the Structure Chart

33 33 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by R.S. Pressman & Associates, Inc., copyright © 1996, 2001 Refining the Architectural Design  A processing narrative must be developed for each module  An interface description is provided for each module.  Local and global data structures are defined  All design restrictions and limitations are noted  A set of design reviews are conducted.


Download ppt "1 These courseware materials are to be used in conjunction with Software Engineering: A Practitioner’s Approach, 5/e and are provided with permission by."

Similar presentations


Ads by Google